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BACKGROUND & AIMS: Copy number alterations (CNAs), eli-
cited by genome instability, are a major source of intratumor
heterogeneity. How CNAs evolve in hepatocellular carcinoma
(HCC) remains unknown. METHODS: We performed single-cell
DNA sequencing (scDNA-seq) on 1275 cells isolated from 10
patients with HCC, ploidy-resolved scDNA-seq on 356 cells from
1 additional patient, and single-cell RNA sequencing on 27,344
cells from 3 additional patients. Three statistical fitting models
were compared to investigate the CNA accumulation pattern.
RESULTS: Cells in the tumor were categorized into the following
3 subpopulations: euploid, pseudoeuploid, and aneuploid. Our
scDNA-seq analysis revealed that CNA accumulation followed a
dual-phase copy number evolution model, that is, a punctuated
phase followed by a gradual phase. Patients who exhibited
prolonged gradual phase showed higher intratumor heteroge-
neity and worse disease-free survival. Integrating bulk RNA
sequencing of 17 patients with HCC, published datasets of
1196 liver tumors, and immunohistochemical staining of 202
HCC tumors, we found that high expression of CAD, a gene
involved in pyrimidine synthesis, was correlated with rapid
tumorigenesis and reduced survival. The dual-phase copy num-
ber evolution model was validated by our single-cell RNA
sequencing data and published scDNA-seq datasets of other
cancer types. Furthermore, ploidy-resolved scDNA-seq revealed
the common clonal origin of diploid- and polyploid-aneuploid
cells, suggesting that polyploid tumor cells were generated by
whole genome doubling of diploid tumor cells. CONCLUSIONS:
Our work revealed a novel dual-phase copy number evolution
model, showed HCC with longer gradual phase was more severe,
identified CAD as a promising biomarker for early recurrence of
HCC, and supported the diploid origin of polyploid HCC.
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

The heterogeneity landscape and evolution pattern of
CNAs in HCC at single-cell resolution remain unknown.
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epatocellular carcinoma (HCC) accounts for approxi-
NEW FINDINGS

CNA accumulation in HCC follows a novel DPCNE model.
Prolonged gradual phase correlates with higher ITH and
worse prognosis. CAD is a biomarker for early
recurrence. Polyploid tumor cells have a diploid origin.

LIMITATIONS

Only 1 case of scDNA-seq in this study has ploidy
resolution. Further studies are needed to fully address
ploidy heterogeneity in HCC.

IMPACT

Our DPCNE model provides new perspective on tumor
clonal evolution and can be used to identify candidate
genes that might be exploited as biomarkers or therapies.

Abbreviations used in this paper: AL, adjacent nontumorous liver; CNA,
copy number alteration; DFS, disease-free survival; DPCNE, dual-phase
copy number evolution; FACS, fluorescence-activated cell sorting; GCNE,
gradual copy number evolution; HCC, hepatocellular carcinoma; IHC,
immunohistochemistry; ITH, intratumor heterogeneity; OS, overall sur-
vival; PCNE, punctuated copy number evolution; PWD-CNA, pairwise
distances of copy number alteration profile; scDNA-seq, single-cell DNA
sequencing; scRNA-seq, single-cell RNA sequencing; TCGA-LIHC, The
Cancer Genome Atlas Liver Hepatocellular Carcinoma Cohort; TNBC,
triple-negative breast cancer; WGD, whole genome doubling.
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Hmately 80% of primary liver cancer and is the third
leading cause of cancer-related mortality worldwide.1 Cur-
rent targeted therapies and immunotherapies show only
limited efficacy and response rate in HCC,2,3 partially due to
extensive tumor heterogeneity.4,5 We, and others, have
characterized intratumor heterogeneity (ITH) in HCC,
highlighting the molecular barrier for accurate diagnosis
and effective treatment.6–9 Nevertheless, most studies
analyze bulk tumors, which only reflect average profiles of
different subclones. The heterogeneity landscape of HCC
tumor cells at single-cell resolution remains largely
unknown.

Copy number alterations (CNAs), elicited by genome
instability, are a major source of ITH.10 Indeed, a recent pan-
cancer analysis indicated that CNAs are a major driver for
transcriptomic ITH.11 Single-cell DNA sequencing (scDNA-
seq) can accurately determine CNAs, making it a powerful
tool to dissect the complex tumor subclonal structure.12

Previous scDNA-seq studies of HCC analyzed a total of
only 100 tumor cells.13,14 Although single-cell RNA
sequencing (scRNA-seq) studies of HCC revealed the tran-
scriptomic ITH across 40,000 cells, these studies lack
genomic resolution.9,15 A comprehensive scDNA-seq study
of HCC tumors is still needed.

Whether tumor progression follows gradual or punctu-
ated evolution is intensely debated.16–18 Gradual evolution
means that tumor cells gradually accumulate genetic aber-
rations, continually adapt to the selection pressure, and
successively transform into more malignant states.19 By
contrast, punctuated evolution model means that genetic
alterations are acquired in a short burst of genomic crisis,
followed by stable clonal expansion.20,21 Gao et al22 per-
formed scDNA-seq on 1000 cells from triple-negative breast
cancer (TNBC) and revealed limited ITH across these tu-
mors. They proposed punctuated copy number evolution
(PCNE) and suggested that CNAs were acquired in a short
burst of genomic crisis, followed by stable clonal expansion.
However, our previous scDNA-seq analyses of a liver tu-
mor23 and of circulating tumor cells24 showed extensive
CNA heterogeneity, which did not fit with the PCNE model.
Therefore, we speculated that the CNA evolution in HCC
might follow a different model.

Here, we report scDNA-seq on a total of 1631 cells from
11 HCC cases and scRNA-seq on 27,344 cells from 3 addi-
tional HCC cases. We propose a novel model of dual-phase
copy number evolution (DPCNE) in HCC, which also ap-
plies to other cancer types. Based on this model, we iden-
tified that CAD, a novel candidate gene involved in
pyrimidine synthesis, correlates with prolonged gradual
phase, rapid tumorigenesis, and reduced survival. Intrigu-
ingly, our ploidy-scDNA-seq on 356 cells covering 5
different ploidy subsets from a single case supports the
diploid origin of polyploid HCC tumors. Our study presents a
unique approach to understanding HCC formation,
detection, and severity, providing important biological and
clinical implications for HCC and shedding new light on
tumor evolution in general.

Materials and Methods
Details about patient cohort, single-cell isolation, flow

sorting of diploid and polyploid subsets, single-cell DNA
sequencing, integer copy number calculation, copy number
profiles clustering, multiple-cell segmentation and event matrix
construction, annotation of cancer-related genes in CNAs,
classification of cell subpopulations, maximum-parsimony
trees, statistical model fitting, classification of P-group and G-
group, cell-ITH, intratumor and intertumor heterogeneity, bulk
RNA-seq, scRNA-seq, inferring CNAs from scRNA-seq data,
survival analysis, and immunohistochemical staining are
described in the Supplemental Material.

Results
Single-Cell DNA Sequencing Identified 3
Subpopulations of Cells in the Tumor Tissue

We performed scDNA-seq on a total of 1222 cells from
tumor tissues (range, 40–182; median, 142) and 53 cells
(range, 3–10; median, 4.5) from adjacent nontumorous
liver (AL) tissues, respectively (Figure 1A, Supplementary
Tables 1 and 2). To avoid sampling biases introduced by

https://doi.org/10.1053/j.gastro.2021.08.052
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any purification or enrichment step, all cells were selected
randomly from the single-cell suspension from each pa-
tient after removing leukocytes. Multiple annealing- and
looping-based amplification cycles, strengthened in deter-
mining CNAs, were adopted for whole genome
amplification.23–25 Low-depth whole genome sequencing, a
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general approach to analyzing CNAs,24–26 was performed
on these single cells (average depth, 0.4�; Supplementary
Table 2). Copy number profiles were calculated from
sequence read depth at 500-kb resolution, with the cells
from AL as reference (Supplementary Figures 1 and 2).
The pseudo-bulk CNA profiles of each patient did mask
many subclonal CNAs affecting numerous drive genes
among those single cells. This result may explain the low
efficacy of targeted therapies in HCC,6–9 and highlighted
the necessity of our study.

Three cell subpopulations were identified in the tumor
tissue (Figure 1B and C, Supplementary Figure 3, and
Supplementary Table 3). Cells without any CNAs were
designated as euploid cells. The percentage of euploid
cells ranged from 5.7% to 66.5% (median, 52.8%). Pre-
sumably, these euploid cells were mainly nonparenchymal
cells, like endothelial cells and fibroblasts. Notably, some
cells with flat euploid copy number profiles also exhibited
approximately 1–10 additional CNAs, defined statistically
in the Supplementary Methods. These cells were desig-
nated as pseudoeuploid cells and identified in 9 of 10
patients (range, 0%–26.4%; median, 2.2%). The third cell
subpopulation, showing profound CNA profiles, was
designated as aneuploid cells (range, 31.6%–72.4%; me-
dian, 41.2%). The purity of tumor cells across these HCC
cases, roughly estimated by the percentage of noneuploid
cells consisting of pseudoeuploid and aneuploid cells,
ranged from 33.5% to 94.4% (median, 47.2%; mean,
50.91%). The existence of 3 major cell subpopulations in
these patients is consistent with the cellular composition
observed in TNBC,22 revealing the variable extent of
cellular heterogeneity in HCC.
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Intra- and Intertumor Heterogeneity at Single-Cell
Resolution

To explore the heterogeneity among these cells, we
focused on noneuploid cells. The percentage of altered
genome for each cell, including amplifications and deletions,
varied substantially within patients (range of standard de-
viation, 1.18%–30.16%), as well as among patients (range of
median, 15.15%–60.12%) (Supplementary Table 4), indi-
cating variable extent of intra- and intertumor heterogene-
ity, respectively (Figure 1D). The t-distributed stochastic
neighbor embedding analysis showed that aneuploid cells
from the same patient fell into the same cluster, and cells
from different patients fell into different clusters
(Figure 1E). Pseudoeuploid cells from different patients fell
into a separate cluster, possibly due to fewer CNA events.
=
Figure 1. scDNA-seq revealed the CNA heterogeneity landscap
cases. MALBAC, multiple annealing and looping-based ampl
number profiles of representative cells from 3 cell subpopulation
deletion, respectively. (C) Proportions of 3 cell subpopulations
genome among noneuploid cells from each patient. Cells are
neighbor embedding (t-SNE) plot of all noneuploid cells. Gray
denotes the cluster of pseudoeuploid cells. (F) Hierarchical clu
values calculated by pvclust are labeled for each cluster. (G)
noneuploid cells.
Pairwise Canberra distances among all of the noneuploid
cells also resulted in 10 patient-specific clusters of aneu-
ploid cells and 1 cluster of pseudoeuploid cells (Figure 1F).
Similar intra- and intertumor heterogeneity were identified
when the same analyses were performed on aneuploid cells
only (Supplementary Figure 4). Collectively, these results
show that the extent of intertumor heterogeneity is higher
than that of intratumor heterogeneity (Supplementary
Figure 5), consistent with our previous observation in
bulk tumors.6,23,27

A previous report of TNBC found that tumor cells from
the same patient all fell into compact clusters by principal
component analysis, indicating stable clonal expansion of
tumor cells and limited ITH.22 Interestingly, aneuploid cells
from our studies exhibited a rather dispersed distribution
pattern compared with that shown in TNBC, and could not
group into 1–3 compact clusters, for instance, P7, P8, and P9
(Figure 1G and Supplementary Figure 4D). Apparently, HCC
tumors have more diverse clonal compositions than TNBC,
suggesting a high extent of ITH unlikely to be explained by
the PCNE model.
Diverse Clonal Composition in P9 Indicated a
Dual-Phase Copy Number Evolution Model

We next explored the evolution model behind the high
ITH of HCC tumors. P9 was first selected as an example. In
P9, we collected 123 cells, comprising 7 euploid, 27 pseu-
doeuploid, and 89 aneuploid cells (Figure 2A). To quanti-
tively assess CNA profiles of each cell, we calculated a
trinary event matrix to treat all CNA events equally for
downstream analysis based on the original CNA profiles in
Supplementary Figure 1 (Supplementary Figure 2).22 We
identified a total of 66 CNAs across the whole genome
binned into 71 regions in P9 (Figure 2A and Supplementary
Figure 6). Pseudoeuploid cells harbored a range of 1 to 16
CNAs (mean, 3.52). For aneuploid cells, a range of 33 to 58
CNAs were identified (mean, 46.07). Cumulative shared
percentage of CNAs showed that aneuploid cells shared a
much higher percentage of CNAs than pseudoeuploid cells
(Figure 2B). This comparison implies that clonal diversity is
large at a relatively early stage, and then diminishes along
with tumor progression, indicating potential clonal
expansion.

Then we examined the evolution of CNA heterogeneity
by constructing a maximum-parsimony phylogenetic tree
based on the CNA events of all the single cells (Figure 2C).
Notably, this tree exhibited a short trunk and highly diver-
sified branches, showing extensive and gradual
e in 10 HCC cases. (A) Workflow of scDNA-seq of 10 HCC
ification cycle; WGS, whole genome sequencing. (B) Copy
s in the tumor tissue. Red and blue denote amplification and
across 10 patients. (D) Boxplots for the percentage of altered
colored according to patient. (E) The t-distributed stochastic
shades denote the clusters of aneuploid cells. Dotted line
stering of noneuploid cells. Approximately Unbiased (AU) P
Principal component analysis (PCA) of the CNA profiles of
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accumulation of CNAs as cells progressed from euploid to
aneuploid genomes. When CNA counts were plotted along
single cells, a clear and sharp rise of CNA counts from
pseudoeuploid cells (n ¼ 16) to aneuploid cells (n ¼ 33)
was observed, indicating a short burst of CNAs at a rela-
tively early stage before the most recent common ancestor
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(Figure 2D).28,29 This short CNA burst was consistent with
that of the PCNE model reported in TNBC,22 during which
the short CNA burst was followed by a rather stable clonal
expansion with no more than 5 additional CNA events,
arguing that selection force played only a marginal role after
the disastrous genomic alterations. However, the divergence
among aneuploid cells in P9 reached up to 25, with a me-
dian of 13 (Figure 2C and Supplementary Table 5), indi-
cating a significant gradual phase of CNA accumulation.
Therefore, we concluded that both PCNE and gradual copy
number evolution (GCNE) coexisted in P9, and the marked
gradual phase contributed significantly to the higher extent
of ITH of P9.

To quantitively assess the evolution model in P9, the
following 3 mathematical fittings were compared: a linear
fitting for the GCNE model, a one-step fitting for the PCNE
model, and a combined fitting for a novel DPCNE model
(Figure 2D). A total of 4 metrics were combined to eval-
uate 3 models, including adjusted R2, predicted R2,
Bayesian information criterion, and Akaike information
criterion. Our DPCNE model (adjusted R2 ¼ 0.9988, pre-
dicted R2 ¼ 0.9987) outperformed both GCNE
model (adjusted R2 ¼ 0.9417, predicted R2 ¼ 0.9414, P <
2.22E-16) and PCNE model (adjusted R2 ¼ 0.9848, pre-
dicted R2 ¼ 0.9846, P < 2.22E-16, ANOVA test). Therefore,
CNAs in P9 followed the DPCNE model, that is, a punctu-
ated burst of CNAs followed by a marked gradual phase,
which in turn shaped the high extent of ITH in P9.

Dual-Phase Copy Number Evolution Was
Identified Across 10 Patients, Exhibiting Variable
Extent of Gradual Evolution Phase

To explore whether DPCNE fitted other patients, we
constructed maximum-parsimony phylogenetic trees for all
patients (Figure 2E). Trees for most patients exhibited
short trunks and long branches, indicating dominant
gradual CNA accumulation. Then we looked into aneuploid
cells in these patients (P1 and P2 not included because
fewer than 20 aneuploid cells were captured), the diver-
gence of CNAs ranged from 8 to 25 (mean, 15.5; median,
13), much higher than the 1–3 proposed in the PCNE
model,22 indicating that tumor cells continually acquired
CNAs during the late stage of tumor progression
(Supplementary Table 5). For instance, in P8, the CNAs in
the gradual phase almost doubled those in the punctuated
phase.

Notably, DPCNE performed significantly better than the
other 2 models across all patients, suggesting that DPCNE is
a better model to describe the clonal evolution pattern in
=
Figure 2. Dual-phase copy number evolution observed in 10 p
neutral; red: 1, amplification; blue: –1, deletion). Color bands to
orange, pseudoeuploid cells, purple, aneuploid cells. Number
heatmap. Potential driver genes affected by the CNAs are labeled
single cell are labeled to the right. (B) Cumulative curve of share
respectively. (C) Maximum-parsimony tree rooted by euploid ce
dicted R2, and Bayesian information criterion (BIC) are displaye
fitting results of each patient are embedded.
HCC tumors (Supplementary Figure 7 and Supplementary
Table 6). Variable proportions of CNAs in different phases
of fitting curves among the 10 patients imply that PCNE and
GCNE are not mutually exclusive. On the contrary, both
evolutionary patterns contribute to shaping the clonal evo-
lution of HCC tumors.
Prolonged Gradual Phase of Dual-Phase Copy
Number Evolution Correlated With Higher
Cellular Heterogeneity and Early Tumor
Recurrence

In P9, P6, P7, and P8, we observed a clear advantage of
DPCNE fitting over the other 2 fittings, consistent with the
prolonged gradual evolution phase in these 4 patients
(Figure 3A). This group of patients was designated as the G-
group. In the rest of the patients, the fitting results of DPCNE
showed a relatively small but significant advantage over
those of the PCNE model, consistent with relatively short
gradual evolution phases. This group of patients was
designated as the P-group. Quantitative analysis showed
that all of the patients followed a DPCNE model exhibiting
variable extent of gradual phase.

Next, we examined the ITH at single-cell resolution by
calculating the pairwise distances of CNA profiles (PWD-
CNA) between aneuploid cells in each patient (Figure 3B
and Supplementary Table 7). Interestingly, the order of
patients by median PWD-CNA value was similar to that by
model fitting shown in Figure 3A. We quantitively
compared the PWD-CNA of each tumor with other tumors
(Figure 3C and Supplementary Table 8). The most signifi-
cant differences were observed between G-group and P-
group tumors, and comparisons within the same group
showed less significant values. Then we pooled the PWD-
CNA values of each group together and found that the
PWD-CNA of the G-group was significantly higher than that
of the P-group (Figure 3D; P < 2.22E-16, Wilcoxon rank
sum test). These results indicate that our classification of
P-group and G-group tumors based on model fitting is
robust and the G-group tumors with a prolonged gradual
phase manifest a higher extent of ITH.

To explore the clinical relevance of our DPCNE model,
we investigated whether P-group and G-group tumors were
associated with clinical outcomes. We defined cell-ITH as
the median value of PWD-CNA of a certain tumor to
represent the ITH at the single-cell level. As expected, G-
group tumors showed significant higher cell-ITH values than
the P-group tumors (Figure 3E; P ¼ .001, one-tailed t test).
Of note, patients in the G-group had a median disease-free
atients with HCC. (A) Trinary event matrices for P9 (gray: 0,
the left show the cell subpopulations, green, euploid cells,
of cells are labeled. CNA event IDs are labeled below the
accordingly. The percentage of CNA events detected in each

d CNAs by the number of pseudoeuploid and aneuploid cells,
lls for P9. (D) Model fitting of CNAs in P9. Adjusted R2, pre-
d. (E) Maximum-parsimony trees for other 9 patients. Model
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survival (DFS) of 12 months, significantly shorter than the
28.5 months of patients in the P-group (Figure 3F; P ¼ .01,
log rank test). These results suggest that the prolonged
gradual phase of DPCNE contributed to the higher cell-ITH
of G-group tumors and is associated with early tumor
recurrence.
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Integrative Analysis Identified CAD as a Potential
Driver Gene for the G-Group

To explore potential driver genes for the prolonged
gradual phase in the G-group, we performed genome-wide
comparison of CNAs between P-group and G-group tumors
(Figure 3G, Supplementary Table 9). Many well-known
driver genes located in CNAs shared by both groups, for
instance, TP53 and AXIN1. Several driver CNAs were
enriched in the G-group, for instance, amplifications in
ARID2, and losses of TSC130 and WNK2.31 The enrichment of
those genes associated with poor prognosis in the G-group
supports our classification of P-group and G-group tumors
based on evolutionary patterns and, more importantly,
corroborates our finding that G-group tumors are associated
with early tumor recurrence.

We designed an integrative strategy based on the 2 fea-
tures of G-group tumors, shorter DFS and higher ITH, to
screen the genes in the G-group enriched CNAs (Figure 3H).
We first used the bulk RNA-seq data of 17 patients with HCC
with distinct DFS (BCLC B stage, 9 cases that we reported
previously32). These patients were divided into the early-
recurrence group (7 cases, DFS < 6 months)33 and the
late-recurrence group (10 cases, DFS > 24 months,
Supplementary Table 1). A total of 1146 differentially
expressed genes were identified, including 613 genes up-
regulated and 533 genes down-regulated in the early-
recurrence group (Supplementary Table 10). Then we iden-
tified 19 amplified and 28 deleted genes in the G-group that
exhibited concordant expression status with the bulk RNA-
seq data (Figure 3H and I and Supplementary Table 11).

Next, we systematically assessed the associations be-
tween 47 candidate genes with ITH in the largest published
HCC dataset—The Cancer Genome Atlas Liver Hepatocellular
Carcinoma Cohort (TCGA-LIHC).4 We applied a well-accepted
strategy of counting subclones to infer the extent of ITH for
these single-region tumors (Supplementary Table 12).34

Notably, a novel candidate gene, CAD, exhibited the highest
positive correlation with the extent of ITH (R ¼ 0.267, P ¼
6.44E-06, Pearson correlation) (Figure 3J, Supplementary
Figure 8, and Supplementary Table 13). The expression of
CAD was significantly higher in the “ITH-high” group in
comparison with the “ITH-low” group (Figure 3K; P ¼ .0092,
Wilcoxon rank sum test). CAD, encoding the carbamoyl-
phosphate synthetase 2, aspartate transcarbamylase and
dihydroorotase (CAD), is a key enzyme of pyrimidine syn-
thesis.35 Altogether, our integrative analysis identified CAD
correlates with higher ITH and early tumor recurrence.
=
Figure 3. Classification of P-group and G-group and identificatio
punctuated, and dual-phase model, respectively. Adjusted R2

Distribution of PWD-CNA values among aneuploid cells for e
among 10 patients, Wilcoxon rank sum test. (D) Comparison
patients, Wilcoxon rank sum test. (E) Comparison of cell-ITH b
Comparison of DFS between P-group and G-group patients, log
between P-group and G-group patients. Orange, G-group enr
genes. (H) Screening of potential driver genes for the G-grou
comparing early-recurrence to late-recurrence tumors. (J) Corre
from the TCGA-LIHC cohort, Pearson correlation. (K) Comparis
from the TCGA-LIHC cohort, Wilcoxon rank sum test.
Immunohistochemical Staining Analysis
Validated That CAD Protein Expression Was
Associated With Early Tumor Recurrence

We next examined the CAD expression among 1196 liver
tumors, comprising 4 published bulk RNA-seq datasets.
Higher CAD expression correlated with shorter DFS and
overall survival (OS) in both the TCGA-LIHC database
(Figure 4A; 364 cases, DFS, P ¼ 2.1E-05; OS, P ¼ .00034)
and the KMplotter-HCC database (Figure 4B; 364 cases, DFS,
P ¼ .0036; OS, P ¼ .00015, log rank test). In addition, higher
CAD expression was associated with shorter OS (DFS not
available) in both our primary liver cancer cohort
(Figure 4C; 309 cases, P ¼ 9.2E-06)23 and Gao et al’s36

cohort (Figure 4D; 159 cases, P ¼ 6.4E-05, log rank test).
Meanwhile, CAD expression was significantly higher in the
tumor compared with AL tissues in both the TCGA-LIHC
dataset (Figure 4E; 419 cases, P < 2.22E-16) and the Gao
et al’s cohort (Figure 4F; 318 cases, P < 2.22E-16, Wilcoxon
rank sum test).

To further validate the prognostic value of CAD, we
performed immunohistochemistry (IHC) of CAD on an
additional set of 202 HCC cases (Figure 4G). Consistently,
CAD protein expression in tumors was higher than that in
AL tissues (Figure 4H; P ¼ .0083, Wilcoxon rank sum test).
We then divided the HCC cases into early-recurrence and
late-recurrence groups and found that early-recurrence
tumors did show higher CAD expression (Figure 4I; P ¼
5.4E-05, Wilcoxon rank sum test). Then we divided these
HCC cases into 2 groups by the mean CAD expression. We
found that CAD high tumors did show significant shorter
DFS (P ¼ .00026, log rank test) and OS (Figure 4J; P¼ .0055,
log rank test). Collectively, high CAD expression is a prom-
ising biomarker for high extent of ITH and early recurrence
of HCC. These results also show the robustness of our
screening strategy based on the DPCNE model, demon-
strating that the entire approach can be used to identify
candidate genes that may be exploited as biomarkers or
therapies.

Dual-Phase Copy Number Evolution Model
Validated by Single-Cell Bulk RNA Sequencing
Data of Hepatocellular Carcinoma and Published
Single-Cell DNA-Sequencing Datasets of Other
Cancer Types

One limitation of scDNA-seq is the low throughput. We
further validated our DPCNE model by the high-throughput
n of CAD. (A) Model fitting results of each patient with gradual,
and Bayesian information criterion (BIC) are displayed. (B)
ach patient. (C) Pairwise comparisons of PWD-CNA values
of pooled PWD-CNA values between P-group and G-group
etween P-group and G-group patients, one-tailed t test. (F)
rank test. (G) Comparison of CNA events and selected genes
iched genes, green, P-group enriched genes, black, shared
p tumors. (I) Volcano plot of differentially expressed genes
lation analysis between CAD expression and the extent of ITH
on of CAD expression between ITH-low and ITH-high groups
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scRNA-seq method. Briefly, we used a droplet-based scRNA-
seq sequencing platform (10X Genomics) to portray the
cellular landscape of 3 HCC tumors, designated as scRNA_H1,
scRNA_H2, scRNA_H3 (Figure 5A).27 Among the 27,344 cells
harvested, we discriminated 9989 aneuploid/malignant cells
and 4380 euploid/nonmalignant cells by inferring large-scale



Figure 5. DPCNE model validated by scRNA-seq data of 3 HCC tumors. (A) Workflow of scRNA-seq in 3 HCC cases. (B–D)
CNA profiles (left), maximum-parsimony trees (middle), and model fitting results of CNA count (right) for scRNA_H1 (B),
scRNA_H2 (C) and scRNA_H3 (D). Red and blue denote amplification and deletion, respectively. Adjusted R2, predicted R2,
and Bayesian information criterion (BIC) are displayed.

=
Figure 4. High expression level of CAD was associated with poor prognosis in HCC. (A, B) DFS and OS of HCC tumors from
the TCGA-LIHC database (A) and the KMplotter-HCC database (B) stratified into CAD-high and CAD-low groups, respectively,
log rank test. (C, D) OS of 309 primary liver cancer patients from Xue et al23 (C) and 159 HCC patients from Gao et al36 (D)
stratified into CAD-high and CAD-low groups, respectively, log rank test. (E) Comparison of CAD expression between tumor
and AL tissues from the TCGA-LIHC database, Wilcoxon rank sum test. (F) Comparison of CAD expression between tumor
and AL tissues from Gao et al, Wilcoxon rank sum test. (G) IHC staining of CAD in our validation cohort of 202 HCC cases.
Representative images of staining scores are shown. Scale bar: 200 mm. (H) Violin plots of CAD expression scores in the tumor
and AL tissues of 202 HCC cases, Wilcoxon rank sum test. (I) Violin plots of CAD expression of 202 cases stratified into early-
recurrence and late-recurrence groups, Wilcoxon rank sum test. (J) Kaplan-Meier plots for DFS and OS for 202 HCC cases
separated by the average CAD expression, log rank test.
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chromosomal CNAs (Figure 5B–D, Supplementary Table 14).
We noticed that the CNA profiles inferred from scRNA-seq
data were noisier than those from scDNA-seq, lacking
power in unambiguously determining small CNAs
(Figure 5B–D). As a result, we were not able to identify
pseudoeuploid cells in these samples. This result further
supports the necessity of scDNA-seq in investigating HCC
clonal evolution.

Nevertheless, the quality of the data was sufficient to
test the DPCNE model. The tumor cells (here referred to as
malignant cells) determined from the scRNA-seq data were
about 10 times of the tumor cells (here referred to as
noneuploid cells) involved in our scDNA-seq data. The CNA
profiles of 3 HCC tumors all showed diverse subclonal
composition, consistent with our observation from scDNA-
seq data (Figure 5B–D). Phylogenetic trees all exhibited
short trunks followed by highly diversified branches. CNA
count plot of 3 HCC tumors all showed a sharp rise of CNA
counts from normal cells (n ¼ 0) to aneuploid cells (n ¼
27, n ¼ 53, and n ¼ 38, respectively), similar to the short
burst of CNAs in the punctuated phase. Then, the cells
continually acquired additional CNAs in a gradual manner
(from 27/53/38 to 82/120/77, accounting for 67.07%/
55.83%/50.65% of all CNAs). Model fitting results showed
that DPCNE model outperformed both GCNE (P < 2.22E-
16) and PCNE (P < 2.22E-16, ANOVA test) (Supplementary
Figure 9 and Supplementary Table 6). These results vali-
dated our DPCNE model in a much larger number of cells.

To further explore whether our DPCNE model applies to
other cancer types, we re-analyzed 2 published scDNA-seq
datasets from TNBC and colorectal cancer.22,37 Notably,
DPCNE model outperformed PCNE and GCNE across all
cases in both colorectal cancer and TNBC (Supplementary
Figure 10 and Supplementary Table 15). Comparing the
fitting results of different models across these cases
revealed that 7 of 9 patients with colorectal cancer and 2 of
12 patients with TNBC could be categorized into the G-
group, indicating a prolonged gradual phase in these cases.
These results suggest that our DPCNE model is robust and
applies to other cancer types.
Ploidy-Resolved Single-Cell DNA Sequencing
Showed That Diploid- and Polyploid-Aneuploid
Cells Had a Common Clonal Origin

Ploidy heterogeneity is an important facet of liver
cellular heterogeneity because hepatocytes can be diploid or
polyploid, where polyploid hepatocytes account for 25%–
50% of hepatocytes in human livers.38,39 To explore ploidy
heterogeneity in HCC, we performed fluorescence-activated
cell sorting (FACS) on the tumor and AL tissues from 10
newly recruited HCC cases (Figure 6A). Because ploidy
classification based on DNA content is accurate when he-
patocytes are in G0/G1, yet may be confused with cell di-
vision when hepatocytes have replicated their DNA in G2/M,
we further performed Ki-67 staining to assess the prolifer-
ation state of tissues.40 Very few cells in AL tissues were
actively cycling (Supplementary Figure 11 and Supplementary
Table 16), indicating that ploidy quantification based on DNA
content is accurate for AL tissues. By contrast, variable
extent of cycling cells was observed among tumor tissues
(range, 3%–40%; median, 10%). To minimize the potential
confusion of cell division in ploidy quantification, we per-
formed Ki-67 correction on the original cellular composition
from FACS. As a result, most tumors (n ¼ 9 of 10) contained
a majority of diploid cells while P20 had an obvious pro-
portion of polyploid tumor cells (diploid, 33.39%, tetraploid,
35.58%, and octaploid, 2.5%) (Supplementary Figures 12
and 13 and Supplementary Table 16). This result is
consistent with previous reports that HCCs are predomi-
nantly diploid.41–44

To further gain ploidy resolution to the cellular ITH of
HCC, we combined FACS with scDNA-seq to perform ploidy-
scDNA-seq on 1 selected case, P20, which had the most
abundant polyploid cells. We successfully performed ploidy-
scDNA-seq on 356 cells covering 5 FACS subsets (AL-2c, 11
cells; AL-4c, 66 cells; T-2c, 85 cells; T-4c, 117 cells; and T-8c,
77 cells) (Figure 6B, Supplementary Table 17) and deter-
mined the absolute CNA profiles of each subset
(Supplementary Figure 14). As expected, cells from the AL
were mostly euploid (Figure 6C). Surprisingly, 25.9% (n ¼
22 of 85) of T-2c cells were aneuploid, standing in sharp
contrast to that 99.1% (n ¼ 116 of 117) of T-4c and 100%
(n ¼ 77 of 77) of T-8c cells were aneuploid. This result
clearly showed that aneuploid cells are highly enriched in
the polyploid subsets (Figure 6D). Because only 1 T-4c cell
was not aneuploid, a ploidy correction rate of 30% based on
Ki-67 would have neglectable changes. Furthermore, the
results of T-8c clearly illustrated the enrichment of aneu-
ploid among polyploid cells whether these cells are tetra-
ploid in G2/M or octaploid in G0/G1.

More interestingly, t-distributed stochastic neighbor
embedding clustering and phylogenetic tree analysis
showed that T-2c, T-4c, and T-8c cells were mixed together
rather than clustered separately (Figure 6E and F). This
result suggested that diploid- and polyploid-aneuploid cells
shared the same clonal origin. An obvious evidence can be
seen from subclonal losses of 3p and 3q, which were not
enriched in either diploid or polyploid subsets (Figure 6B,
Supplementary Figure 15). Instead, they can be found across
T-2c, T-4c, and T-8c, suggesting that these subclonal CNA
events were inherited during the ploidy alteration. Taking
the enrichment of aneuploidy in polyploid subsets into ac-
count, the highest possibility here is that those polyploid-
aneuploid cells were generated by whole genome doubling
(WGD) of diploid-aneuploid cells. Therefore, our result from
this case showed that aneuploid cells first originated from
the diploid subset and then evolved into polyploid subsets.
Collectively, our results from FACS and ploidy-scDNA-seq
support the diploid origin of HCC tumors, consistent with
studies on rodents that diploid cells are more susceptible to
tumorigenesis.40,45,46
Discussion
Our DPCNE model showed that punctuated evolution

and gradual evolution are not mutually exclusive (Figure 7).
Instead, both evolution patterns can coexist in the same



Figure 6. FACS analysis of 10 HCC patients and ploidy-scDNA-seq of P20. (A) Workflow of FACS analysis and ploidy-scRNA-
seq. MALBAC, multiple annealing and looping-based amplification cycle; WGS, whole genome sequencing. (B) Copy number
profiles of all the cells in P20. Row sidebars denote the 3 cell subpopulations and the 5 ploidy subsets. (C) Proportions of 3 cell
subpopulations across the 5 ploidy subsets. (D) Proportions of 5 ploidy subsets across the 3 cell subpopulations across. (E)
The t-distributed stochastic neighbor embedding (t-SNE) analysis of the CNA profiles of noneuploid cells in P20. Cells are
labeled by the 5 ploidy subsets. (F) Maximum-parsimony tree rooted by euploid cells for P20.
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Figure 7. Three models of copy number evolution. (A) GCNE. (B) PCNE. (C) DPCNE. For each of 3 models, we use 3 different
plots to describe the CNA evolution patterns. Five different timing points (T1, T2, T3, T4, and T5) spanning from tumor initiation
to progression and diagnosis are denoted accordingly. Different clones and subclones were labeled by color. Left: Honeycomb
plots show discrete screenshots of tumor subclonal composition at different timing points.Middle: Clonal evolution plots show
the continuous process of tumor subclonal composition. Right: Evolution model plots show the CNA accumulation along time.
Red and blue regions denote punctuated phase and gradual phase, respectively.
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tumor and may drive hepatocarcinogenesis at different
stages. Previous studies supporting the PCNE model borrow
evidence from catastrophic CNA events, such as chromo-
thripsis and chromoplexy.17,21 However, those events only
account for a small percentage of all CNAs and are often
accompanied by other discrete somatic alterations. The
co-occurrence of discrete and catastrophic events in most
cancer types actually supports our DPCNE model. Therefore,
our model reconciles the conflict between gradual evolution
and punctuated evolution, implying that it is not a binary
choice and both evolution strategies can be exploited by
tumor cells, alternatively or parallelly.

Technically, both scDNA-seq and scRNA-seq methods
have pros and cons in detecting CNAs.47 scDNA-seq can
accurately determine CNAs,18,19 making it a standard tool
to investigate the complex tumor subclonal structure. Due
to the duplication error and allelic dropout inherent in
whole genome amplification of single cells that mostly
have only 2 copies of DNA, the throughput of scDNA-seq is
often limited to hundreds of cells. Increasing the throughput
of scDNA-seq comes at the cost of coverage and accuracy. By
contrast, scRNA-seq are more robust because messenger
RNA is more abundant than DNA in single cells and has
many copies. scRNA-seq can be easily integrated to droplet-
based platforms, enabling the high-throughput tran-
scriptomic analysis of thousands of cells in a single
assay.27,48,49 However, scRNA-seq cannot directly determine
CNAs. Although CNAs can be mathematically inferred from
scRNA-seq data, it performs best at arm-level CNAs to
distinguish malignant from nonmalignant cells while lacks
power in determining small CNAs to reconstruct the detailed
subclonal structure. Of note, we were not able to identify
pseudoeuploid cells from our scRNA-seq data. Therefore,
scDNA-seq is still the better choice for investigating the CNA
landscape. Accurate and high-throughput scDNA-seq
methods are needed in the future. In addition, current
scDNA-seq and scRNA-seq methods cannot discriminate
diploid and polyploid cells.

Whether HCC is composed mainly of diploid or poly-
ploid cells is hotly debated. Older reports suggest that
HCCs are predominantly diploid,41–43 and this has been
validated more recently.44 Numerous studies have found
that diploid hepatocytes are more sensitive to HCC for-
mation compared with polyploid hepatocytes, which
partially explains why they drive tumorigenesis.40,45,46

However, opposite observations have found that a sub-
set of HCC with TP53 mutations are characterized by
polyploidy,50 which seems to stand against the diploid
origin of HCC and deny the tumor suppressive role of
polyploid hepatocytes. Despite limited results from a
single case, our ploidy-scDNA-seq analysis led to the
following key observations: aneuploid cells were enriched
in polyploid subsets rather than the diploid subset; and
among those aneuploid cells in the tumor, polyploid
subsets shared a common origin with their diploid
counterparts. The highest possibility here, at least in this
single case, is that aneuploid tumor cells originate from
the diploid subset and underwent WGD to generate those
polyploid subsets, but not vice versa. In this scenario, the
reported TP53-mutant–enriched polyploid tumors may
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originate from diploid hepatocytes, yet exhibited a higher
frequency of WGD in comparison to other diploid tu-
mors.50 In agreement with this, a pan-cancer analysis
reveals that TP53 mutations are highly associated with
WGD.51 Therefore, our results may reconcile the conflict
reports of diploid/polyploid nature of HCC tumors and
indicate that previous seeming contrary results may not
be inconsistent, and all actually support the diploid origin
of HCC tumors. Whether all of those polyploid HCC tu-
mors result from WGD of diploid predecessors warrants
further large-cohort studies.

At last, we identified a gene, CAD, involved in pyrimidine
synthesis, as a novel prognostic biomarker for HCC. Previ-
ous studies found that CAD up-regulation increases tumor
proliferation by rewiring urea cycle metabolism in cancer to
support anabolism.35,52 Therefore, urea cycle–related me-
tabolites in the plasma and urine may serve as biomarkers
for the G-group patients, higher cell-ITH and early tumor
recurrence. Our study sheds light on potential links among
altered tumor metabolism, highly diversified clonal sub-
structure, and poor tumor prognosis.

Supplementary Material
Note: To access the supplementary material accompa-
nying this article, visit the online version of Gastroen-
terology at www.gastrojournal.org, and at http://doi.org/
10.1053/j.gastro.2021.08.052.
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