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Liver tumour immune microenvironment 
subtypes and neutrophil heterogeneity

  
Ruidong Xue1,7, Qiming Zhang2,7, Qi Cao1,7, Ruirui Kong1,7, Xiao Xiang3,7, Hengkang Liu1, 
Mei Feng1, Fangyanni Wang1, Jinghui Cheng1, Zhao Li3, Qimin Zhan4, Mi Deng4, Jiye Zhu3,8 ✉, 
Zemin Zhang2,5,8 ✉ & Ning Zhang1,4,6,8 ✉

The heterogeneity of the tumour immune microenvironment (TIME), organized by 
various immune and stromal cells, is a major contributing factor of tumour metastasis, 
relapse and drug resistance1–3, but how different TIME subtypes are connected to the 
clinical relevance in liver cancer remains unclear. Here we performed single-cell 
RNA-sequencing (scRNA-seq) analysis of 189 samples collected from 124 patients and 
8 mice with liver cancer. With more than 1 million cells analysed, we stratified patients 
into five TIME subtypes, including immune activation, immune suppression mediated 
by myeloid or stromal cells, immune exclusion and immune residence phenotypes. 
Different TIME subtypes were spatially organized and associated with chemokine 
networks and genomic features. Notably, tumour-associated neutrophil (TAN) 
populations enriched in the myeloid-cell-enriched subtype were associated with an 
unfavourable prognosis. Through in vitro induction of TANs and ex vivo analyses of 
patient TANs, we showed that CCL4+ TANs can recruit macrophages and that PD-L1+ 
TANs can suppress T cell cytotoxicity. Furthermore, scRNA-seq analysis of mouse 
neutrophil subsets revealed that they are largely conserved with those of humans. 
In vivo neutrophil depletion in mouse models attenuated tumour progression, 
confirming the pro-tumour phenotypes of TANs. With this detailed cellular 
heterogeneity landscape of liver cancer, our study illustrates diverse TIME subtypes, 
highlights immunosuppressive functions of TANs and sheds light on potential 
immunotherapies targeting TANs.

Primary liver cancer (PLC) has three major histological subtypes—
hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma 
(ICC) and combined hepatocellular and intrahepatic cholangiocar-
cinoma (CHC)4. Despite recent progress in immunotherapies5, our 
understanding of the baseline TIME landscape in PLC is limited, 
precluding biomarker identification for better patient stratifica-
tion. A comprehensive single-cell study covering most cell popu-
lations and three major subtypes of PLC with established clinical 
parameters is needed. Functional contributions of neutrophils in 
cancer are increasingly recognized6–10 with both anti-tumour11,12 and 
pro-tumour13,14 roles reported. scRNA-seq has been used to dissect 
TIME components of PLC15–22 and neutrophil heterogeneity23–25, but 
these studies usually involve antibody-based cell enrichment and 
are limited in cohort size. Owing to the short lifespan of neutrophils 
and technical difficulties in handling them, the functional hetero-
geneity of neutrophils in cancer remains unclear. Here we analysed 
the cellular landscape of 189 samples collected from patients and 
mouse models with liver cancer, dissected the TIME subtypes, and 
investigated the phenotypic and functional heterogeneity of neu-
trophils in liver cancer.

 
A large-scale single-cell atlas of liver cancer
To survey the TIME landscape across PLC covering all cell populations, 
we performed scRNA-seq analysis of 160 samples of 124 treatment-naive 
patients, including 79 with HCC, 25 with ICC and 7 with CHC (Fig. 1a, 
Extended Data Fig. 1a and Supplementary Tables 1 and 2). A total of 
89 TIME cell clusters were identified among 1,092,172 cells obtained 
(Fig. 1b,c, Extended Data Figs. 1 and 2, Supplementary Fig. 1, Supplemen-
tary Note 1 and Supplementary Table 3). Owing to our large cohort and 
enrichment-free strategy, we captured more diverse populations and 
identified a substantial proportion of neutrophils lacking characteri-
zation in PLC15–22 (Extended Data Fig. 1i,j). TIME cell clusters exhibited 
obvious tissue and cancer type preference, and some were associated 
with aetiologies (Extended Data Fig. 2b–d). Copy-number analysis 
showed that most epithelial cells were tumour cells, showing either 
high hepatic or biliary scores (Extended Data Fig. 1e–h). In contrast 
to TIME clusters constituting cells across different patients, tumour 
cell clusters tended to be patient specific. On the basis of PLC subtype 
composition representing real-world epidemiology, our multifaceted 
data encompass well-annotated clinical information, a single-cell atlas 
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with diverse populations and matched genomic profiles, enabling us 
to examine the cellular heterogeneity landscape of PLC in detail.

Cellular module analyses reveal five TIME subtypes
To investigate TIME subtypes of PLC, we examined co-enrichment pat-
terns of cells from tumour tissues. Hierarchy clustering identified five 
stable cellular modules (CM1–CM5) (Fig. 2a and Extended Data Fig. 3a). 
On the basis of the differential enrichment of CM1–CM5, we stratified 
the patients into five corresponding TIME subtypes (Fig. 2b–e), of 
which the properties were designated considering four aspects: (1) cell 
clusters, (2) functional marker gene expression, (3) TIME-related gene 
signatures26 and (4) prognostic relevance (Extended Data Fig. 3b–f).

CM1 contained activated myeloid and T cell clusters, including 
mature dendritic cells enriched in immunoregulatory molecules 
(DC_03_LAMP3), CXCL9+ macrophages (Mph_06_CXCL9), T helper 
type-1-like cells (CD4T_07_CXCL13) and exhausted T cells (Fig. 1c). High 
expression of IFNG, GZMB and PDCD1, along with enriched signatures 
of ‘co-activation molecules’ and ‘checkpoint molecules’ suggested 
that CM1-dominant patients exhibited an immune-activated state, 
and were therefore designated as TIME-IA (immune activation). The 
enrichment of Mph_03_SPP127 and high IL1B expression28—both related 

to immunosuppression—enriched signatures of ‘immune suppres-
sion by myeloid cells’ and ‘pro-tumour cytokines’, and the association 
with a worse prognosis collectively suggest immunosuppressive and 
pro-tumour phenotypes of CM2, and the corresponding patients were 
therefore designated as TIME-ISM (immune suppressive myeloid).

Stromal cells were enriched in both CM3 and CM4. The enrichment 
of two stromal clusters (EC_03_TFF3 and Fb_01_FAP), high expres-
sion of tumour-activated stromal genes such as COL1A1, MMP11 and 
ITGA1, enriched signatures of ‘matrix’ and ‘cancer-associated fibro-
blasts’ and the association with a worse prognosis led us to designate 
CM3-dominant patients as TIME-ISS (immune suppressive stromal). 
By contrast, CM4 contained most endothelial cell and mesenchymal 
clusters but lacked immune cells. Particularly, the enriched CXCL12+ 
fibroblasts (Fb_02_CXCL12) could exclude T cells from tumour cells29. 
On the basis of these results together, we propose an immune exclu-
sion phenotype (TIME-IE). Unexpectedly, cytotoxic T cells (CD8T_08_
GZMK) were also enriched in this cellular module. Using multicolour 
immunohistochemistry (mIHC), we observed that GZMK+ CD8+ T cells 
mainly localized in the stroma yet were excluded from tumour regions 
(Fig. 2f), suggesting that these immune-excluded T cells are actu-
ally cytotoxic rather than exhausted. CM5 contained liver-resident 
clusters including residential natural killer cells (NK_05_CD160), 
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experimental workflow. The numbers of cases and samples collected for each 
cancer type and mouse model are denoted. b, Uniform manifold approximation  
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Kupffer cells (Mph_01_MARCO) and liver sinusoidal endothelial cells 
(EC_01_CLEC4A), and was associated with a better prognosis. Thus, 
CM5-dominant patients were designated as TIME-IR (immune resi-
dence).

Taken together, we name this classification scheme TIMELASER, 
for ‘tumour immune microenvironment subtypes at the single-cell 
resolution including immune activation, suppression, exclusion and 
residence phenotypes’ (Fig. 2d and Extended Data Fig. 5e,f). Survival 
analysis by assigning each patient into a single-cellular module or by 
stratifying patients on the basis of each cellular module signature 
showed consistent results (Fig. 2e and Extended Data Fig. 3e,f), sug-
gesting that our classification is robust and clinically relevant. Reanalys-
ing published scRNA-seq15–17 and bulk RNA-seq datasets30–32 revealed 
similar enrichment of five TIMELASER subtypes across PLC (Extended 
Data Fig. 4a–e). These results validated our TIMELASER framework 
and showed that our TIMELASER-derived signatures (Supplemen-
tary Table 3) could also be used for bulk data. Moreover, performing 

co-detection by indexing (CODEX) analysis of representative samples 
and reanalysing spatial transcriptomes of PLC33 successfully recapitu-
lated the cellular composition of each subtype, further validating our 
TIMELASER framework at spatial resolution (Supplementary Note 2 
and Extended Data Fig. 4f,g).

TIMELASER subtypes exhibit distinct features
Diverse expression patterns of chemokines and cytokines and their 
receptors observed in both tumour and TIME cells hint at underlying 
factors shaping diverse TIMELASER subtypes (Fig. 2g,h, Extended Data 
Fig. 5a–d and Supplementary Note 3). Concordant chemokine expres-
sion patterns of tumour and TIME cells were observed in the TIME-IA 
and TIME-ISM subtypes, suggesting positive-feedback loops. For exam-
ple, CXCL9/10/11–CXCR3 ligand–receptor (L–R) pairs were enriched 
in TIME-IA, whereas CXCL1/3/8–CXCR2 L–R pairs were enhanced in 
TIME-ISM (Fig. 2g,h). These results, along with unique L–R pairs in other 
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TIME subtypes, suggest that distinct chemokine networks contribute 
to the organization of TIMELASER subtypes.

Analyses of exome data identified recurrently mutated genes cor-
related with TIMELASER subtypes, including driver genes such as 
TP53, CTNNB1, KRAS and IDH134 (Extended Data Fig. 6a–e and Supple-
mentary Fig. 2). Furthermore, despite the extensive heterogeneity of 
tumour cells, we characterized eight common gene modules35 linked 
with TIMELASER subtypes (Supplementary Note 4 and Extended Data 
Fig. 6f,g). For example, the cell cycle gene module was enriched in 
TIME-IA, indicating that these proliferating tumour cells would engage 
with immune cells. In summary, our TIMELASER subtypes exhibit dif-
ferent chemokine networks, and are associated with distinct somatic 
alterations and transcriptomic profiles of tumour cells.

Neutrophil heterogeneity in liver cancer
The enrichment of multiple neutrophil subsets in TIME-ISM, their 
association with poor prognosis and their scarcity36 led us to further 
examine neutrophils. Using mIHC, we validated the existence of neu-
trophils in PLC, showing that ICC has significantly more neutrophils 
than HCC (Extended Data Fig. 7a), consistent with our observation that 
TIME-ISM is enriched in ICC. A total of 34,307 neutrophils were divided 
into 11 subsets that exhibited clear tissue separation and cancer-type 
preference (Fig. 3a,b and Extended Data Fig. 7b–e). Neu_02_S100A12, 
Neu_03_ISG15 and Neu_04_TXNIP were mainly peripheral blood neu-
trophils (PBNs) (Extended Data Fig. 7f), whereas Neu_05_ELL2 and 
Neu_06_PTGS2 were mainly adjacent liver neutrophils (ALNs). All of 
the other six subsets (Neu_01_MMP8, Neu_07_APOA2, Neu_08_CD74, 
Neu_09_IFIT1, Neu_10_SPP1 and Neu_11_CCL4) were enriched in tumours 
and designated as TANs. Developmental trajectory analysis revealed 
a clear sequential differentiation path from PBNs to ALNs and then 
to TANs (Fig. 3a and Extended Data Fig. 7e). Notably, a combinatorial 
high proportion of three TAN subsets from TIME-ISM (Neu_09/10/11, 
accounting for an average of 86.8% of total TANs) was associated with a 
worse prognosis (Extended Data Fig. 7g), indicating pro-tumour func-
tions of these TANs.

Distinct gene signatures were observed across these neutrophil sub-
sets (Extended Data Fig. 7h,i). PBNs expressed high levels of secretory 
vesicle signatures associated with anti-pathogen activities, whereas 
ALNs and TANs expressed enhanced levels of matrix and chemokine sig-
natures. Analysing regulons of transcription factors (Fig. 3c) revealed 
higher SPI1 activity in PBNs, whereas NFE2L2 and CREM were more 
active in both ALNs and TANs. MAFG, BHLHE40 and HES4 were more 
active in TANs and possibly related to neutrophil reprogramming in 
tumours (Extended Data Fig. 8a). The activities of these transcrip-
tion factors were confirmed by accessibility signals detected by assay 
for transposase accessible chromatin using sequencing (ATAC-seq) 
analysis of matched patient-derived PBNs, ALNs and TANs (Extended 
Data Fig. 8b). Collectively, our results present a layered landscape of 
11 neutrophil subsets and support that neutrophil differentiation may 
be orchestrated by transcription factors in a spatiotemporal manner 
(Supplementary Note 5 and Supplementary Table 3).

To systematically examine the function of TANs, we first induced 
TANs in vitro by co-culturing human PBNs with three human liver can-
cer cell lines—HepG2, HCCLM3 and MHCC97H—and a control cell line, 
HEK293T (Extended Data Fig. 8c–f). Compared with the controls, PBNs 
co-cultured with various cancer cell lines showed concordant higher 
expression of pro-angiogenesis and chemokine production signatures, 
indicating TAN-like phenotypes, and we therefore termed these cells 
‘in vitro induced TANs’. Signatures of PBN and ALN subsets were down-
regulated, whereas most TAN subsets were upregulated, with that of 
Neu_11_CCL4 as the highest (Supplementary Note 6 and Extended Data 
Fig. 8f), suggesting that this subset is more favoured than others in our 
co-culture system. These results support the spectrum of neutrophil 
subsets identified from our scRNA-seq data.

Chemokine secretion and immunosuppression 
phenotypes of TANs
We next focused on phenotypes and functions of two TAN subsets—
Neu_11_CCL4 and Neu_09_IFIT1. CCL4+ TANs (Neu_11_CCL4) expressed 
high levels of chemokine genes CCL3 and CCL4, confirmed by mIHC 
(Fig. 3d and Extended Data Fig. 8g). In vitro induced TANs also showed 
elevated CCL4 expression (Fig. 3e, Extended Data Fig. 8h and Supple-
mentary Fig. 3). We next directly investigated chemokine secretion 
by ex vivo analysis of patient-derived TANs and non-tumoural neu-
trophils (that is, PBNs or ALNs, referred to as non-TANs). Compared 
with non-TANs, TANs showed higher accessibility signals of CCL4 and 
CCL4 protein secretion (Fig. 3f,g). CCL4+ TANs were predicted to recruit 
macrophages through CCL4–CCR5 (Extended Data Fig. 8i). Consistently, 
more autologous monocytes were recruited in the chemotactic assay 
when co-cultured with TANs (Fig. 3h and Extended Data Fig. 8j). These 
results validate the chemokine-secreting function of TANs and support 
that CCL4+ TANs could recruit macrophages.

We also found that TANs showed a marked increase in CD274 (encod-
ing PD-L1) expression compared with non-TANs, with Neu_09_IFIT1 
showing the highest expression (Fig. 3i). CD274 expression of in vitro 
induced TANs continuously increased in a time-dependent manner 
(Fig. 3j). Fluorescence-activated cell sorting (FACS) analysis further 
showed significantly higher PD-L1 expression in in vitro induced TANs 
compared with in the controls (Fig. 3k and Extended Data Fig. 8k). 
ATAC-seq and FACS analyses also revealed higher accessibility signals 
of CD274 and PD-L1 expression in patient-derived TANs (Fig. 3l,m). To 
investigate whether the high PD-L1 expression of TANs would directly 
inhibit T cell activity, we co-cultured CD8+ T cells with in vitro induced 
TANs (Extended Data Fig. 9a,b) or patient-derived TANs. CD8+ T cells 
co-cultured with in vitro induced TANs showed lower protein levels of 
the T cell cytotoxic marker IFNγ and activation markers CD25 and CD69 
(Fig. 3n and Extended Data Fig. 9c). After adding anti-PD-L1 antibodies, 
the decline in IFNγ in CD8+ T cells was reversed in the PBN-MHCC97H 
group compared with in the controls (Fig. 3o and Extended Data 
Fig. 9d), confirming that PD-L1 mediates the suppressive function of 
TANs. Furthermore, autologous CD8+ T cells co-cultured with human 
TANs exhibited lower proliferation property (CFSE), and lower levels of 
IFNγ, GZMB, PRF1 and CD25 (Fig. 3p and Extended Data Fig. 9e). Moreo-
ver, mIHC revealed the physical proximity of PD-L1+ neutrophils and 
PD1+ CD8+ T cells (Fig. 3q), supporting their direct interaction. These 
results together demonstrate that PD-L1+ TANs suppress cytotoxic 
CD8+ T cells in PLC.

Notably, two IFIT1+ neutrophil subsets enriched in PBNs (Neu_03_
ISG15) and TANs (Neu_09_IFIT1) showed distinct PD-L1 expression 
(Fig. 3i). L–R analyses revealed that Neu_09_IFIT1 cells were more likely 
to interact with IFNG+ lymphocytes (CD8T_13_PDCD1_IFNG and NK_03_
FCGR3A_IFNG) through IFNγ–type II IFNR (Supplementary Note 7 and 
Extended Data Fig. 9f–j). These results indicate that interactions with 
IFNγ+ cells may contribute to the high PD-L1 expression of Neu_09_IFIT1.

Conserved neutrophil subsets in human and mouse 
liver cancer
To further examine heterogeneous functions of TANs in vivo, we built 
two new spontaneous liver cancer mouse models, with the pTMC mice 
developing mainly HCC and pTMK mice developing mainly ICC (Methods  
and Extended Data Fig. 10a–c). We performed scRNA-seq analysis of 
21 samples that included peripheral blood, tumour-adjacent liver and 
tumours collected from 6 mice (Extended Data Fig. 10d,e and Sup-
plementary Table 4). A total of 17,780 neutrophils were divided into  
12 clusters showing clear tissue specificity and ordered develop-
mental trajectory (Fig. 4a,b and Extended Data Fig. 10f–h). Unbiased 
cross-species data integration of neutrophil subsets and concordant 
expression of key signature genes suggested that neutrophils in mouse 
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and human were largely conserved (Fig. 4c, Extended Data Fig. 10i–k 
and Supplementary Note 8). Specifically, three TAN subsets from 
TIME-ISM (Neu_09/10/11) corresponded to mNeu_10/11/12, respec-
tively. Notably, higher Cd274 expression was observed in mouse TANs, 
consistent with that in human TANs (Fig. 4d). These results laid the 
basis for investigating neutrophil-based therapy in our mouse models.

Neutrophil depletion attenuates tumour progression
A collectively pro-tumour phenotype of the TIME-ISM TANs 
(Neu_09/10/11) led us to examine the therapeutic effect of eliminating 
those pro-tumour TAN subsets in vivo. As a combinatory in vivo elimi-
nation strategy specifically targeting Neu_09/10/11 was not available, 
we reasoned that neutrophil depletion using anti-Ly6G antibodies37 
might be the most proximate way to mimic such therapy. Neutrophil 

depletion resulted in significant reductions in liver cancer nodules and 
tumour weight (Fig. 4e,f). Both the number of TANs and PD-L1 expres-
sion of TANs decreased after anti-Ly6G treatment compared with the 
isotype control (Fig. 4g and Extended Data Fig. 10l–m). IHC analysis 
confirmed that there were lower numbers of neutrophils and prolifera-
tive malignant cells in the Ly6G-blockade group (Fig. 4h and Extended 
Data Fig. 10n). We further assessed the neutrophil-depletion efficacy 
by parallel detection of surface and intracellular Ly6G38 (Extended 
Data Fig. 10o,p). Analysis of intracellular Ly6G confirmed that about 
70% of neutrophils were depleted after Ly6G blockade, consistent with 
IHC (Fig. 4h and Extended Data Fig. 10n). Furthermore, we observed a 
46.6% reduction in infiltrating macrophages (Extended Data Fig. 10n). 
Although Ly6G blockade did not alter the number of CD8+ T cells, 
their exhaustion states were relieved as shown by decreased levels 
of the checkpoint markers PD-1 and TIM3 (Fig. 4g and Extended Data 

–2
–1
0
1
2
3

P = 2.7 × 10–3

CXCL8

e

Percentage
Average exp.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

CCL5

CCL4

CCL3

CCL2

CXCL8

CCR2

CCR1

CXCR2

CXCR1

9 10 1187654321

● ● ● ●0 75 –1 2

lo
g 2[

FC
 (t

im
e 

ve
rs

us
 0

 h
)]

lo
g 2[

FC
 (t

im
e 

ve
rs

us
 0

 h
)]

CCL4 3,787 bp

0 18 24 30

–2

0

2

4
P = 1.4 × 10–3

CCL4

Time (h)

Time (h)Time (h)
g

f

h

Non TA
N

N
um

b
er

 o
f

m
on

oc
yt

es

P = 0.0175

0

600

Non TA
N

0

6,000
P = 0.0316

C
C

L4
 (p

g
m

l–1
)

PBN

ALN

TAN

i

0 0.1

9
10
11

8
7
6
5
4
3
2
1

0 0.04

PBN
ALN
TAN

CD274

n o

j k l

m
–2.5

0

2.5

5.0
P = 1.7 × 10–3

CD274

0

0.5

1.0

1.5

0 18 24 30

P = 3.5 × 10–2

CEACAM8

Time (h)

0

80

PBN-M
HCC97

H

PBN-H
ep

G2

PBN-H
CCLM

3

PBN-H
EK29

3T
PBNIF

N
γ+

 c
el

ls
 o

f C
D

8+
 T

 c
el

ls
 (%

)

IF
N
γ+

 c
el

ls
 o

f C
D

8+
 T

 c
el

ls
 (%

)

P = 0.4605
P = 0.0398

P = 0.0300
P = 0.0349

P = 0.0418
P = 0.0310

P = 0.0364

0

80
P = 0.0331

P = 0.4134

P = 0.0241
P = 0.3312

P = 0.9334

PBN–M
HCC97

H–Ig
G co

nt
ro

l

PBN–M
HCC97

H–a
nt

i-P
D-L

1

PBN–H
EK29

3T
–Ig

G co
nt

ro
l

PBN–H
EK29

3T
–a

nt
i-P

D-L
1

PBN–a
nt

i-P
D-L

1

PBN–Ig
G co

nt
ro

l

M
FI

 o
f P

D
-L

1

P = 0.1568
P = 0.0002

P = 0.0027
P = 0.0065

P = 0.0067
P = 0.0107

P = 0.0284

0

400

PBN–M
HCC97

H

PBN–H
ep

G2

PBN–H
CCLM

3

PBN–H
EK29

3T
PBN

p q

Non
TA

N

M
FI

of
P

D
-L

1

P = 0.0110

0

2,000

Non TAN

P = 0.0079

C
FS

E
 (%

)

0

80

IF
N
γ+

 (%
)

Non TAN

P = 0.0135

0

80

M
FI

of
 G

Z
M

B

Non TAN

P = 0.0281

0

1 × 104

M
FI

of
P

R
F1

Non TAN

P = 0.0249

0

8 × 103

C
D

25
+
 (%

)

Non TAN

P = 0.0228

0

60

Non TAN

IF
N
γ 

(p
g

m
l–1

)
P = 0.0229

0

400
PD1CD8PD-L1CD66b DAPI R1

R2

P
D

1+
 C

D
8+

 c
el

ls
 o

f
C

D
8+

 T
 c

el
ls

 (%
)

0

10

20

30
P = 0.0003

Stro
m

a

Tu
m

ou
r

P
D

-L
1+

C
D

66
b

+
ce

lls
 o

f
C

D
66

b
+
 T

 c
el

ls
 (%

)

0

20

60

100
P = 0.0004

Stro
m

a

Tu
m

ou
r

PD-L1–BV421
101 105

0

100
Non
TAN 980

68

M
ax

. p
er

ce
nt

ag
e

Stroma

Tumour

SPI1 (98g)

FOXO3_ext (17g)

IRF1 (343g)

STAT2 (25g)

STAT1 (47g)

NFE2L2_ext (212g)

CREM (297g)

ETS2_ext (53g)

MAFG (12g)

BHLHE40_ext (12g)

HES4_ext (13g)

XBP1 (14g)

YBX1_ext (39g)

0 0.2
Regulon activity

b d

±

+++

+++

+++

±

±

±

±

±

±

±

±

±

±

±

++

++

±

±

±

±

±

+++

±

±

±

±

±

+++

++

±

±

±

±

±

±

±

±

±

±

+++

±

+

±

±

±

±

±

±

±

±

±

+++

+++

+++

PB AL

H
C

C

C
H

C

IC
C

9

10

11

8

7

6

5

4

3

2

1

c

0 1

Predicted order
 of differentiation

a

–8

–4

0

4

–5 0 5
UMAP 1

U
M

A
P

 2

Neu_01_MMP8

Neu_02_S100A12

Neu_03_ISG15

Neu_04_TXNIP

Neu_05_ELL2

Neu_06_PTGS2

Neu_07_APOA2

Neu_08_CD74

Neu_09_IFIT1

Neu_10_SPP1

Neu_11_CCL4

9

10

11

8

7

6

5

4

3

2

1

PB

AL

Tumour

1011

1

2

3

4

5

6

7

8

9

34,307 cells

Ro/e

±

+

++

+++

1

1.5

3
>3

0

9101187654321

ALN

TAN

0
1
2
3

0 18 24 30 0 18 24 30

P = 1.8 × 10–3

Chemokine

PBN–HEK293T

PBN–MHCC97H

PBN–HepG2

PBN–HCCLM3

PBN

5,000 bpCD274PBN

Fig. 3 | Neutrophil heterogeneity and functional validation in humans.  
a, Neutrophil clusters coloured by cluster, tissue source and developmental 
order. b, Tissue preference of neutrophil clusters in humans, revealed by 
Ro/e (ratio of observed cell number to expected cell number). c, Transcription 
factors inferred by SCENIC. The number of target genes for each transcription 
factor is indicated in parentheses. d, Expression (exp.) of chemokines and 
receptors. e, Expression of signatures and genes in in vitro induced TANs.  
f, Normalized ATAC-seq tracks of CCL4. The ATAC peak is denoted with the  
grey line and red shading. g, Quantification of CCL4 production using 
enzyme-linked immunosorbent assay (ELISA). n = 4. h, Chemotaxis abilities of 
matched TAN or non-TAN populations on autologous monocytes. n = 3. i, CD274 
expression. j, CD274 and CEACAM8 expression as described in e. k, PD-L1 
expression in co-cultured PBNs from e examined using FACS. n = 4. l, ATAC-seq 
tracks of CD274 as described in f. m, PD-L1 expression in matched TAN or 

non-TAN populations. n = 4. MFI, mean flucorescence intensity. n, Proportions 
of IFNγ+CD8+ T cells. n = 4. o, IFNγ expression in CD8+ T cells co-cultured with 
different neutrophil–cell line–antibody combinations. n = 3. p, Comparison of 
autologous CD8+ T cells co-cultured with matched TANs or non-TANs. n = 4, 
including proliferation (CFSE) and functional marker (CD25, IFNγ, GZMB and 
PRF1) expression. IFNγ production was further quantified by ELISA (n = 3).  
q, Staining of neutrophils (CD66b) and CD8+ T cells. Representative cells are 
indicated by arrows, including PD-L1+ CD66b+ cells (white), PD1+ CD8+ T cells 
(cyan), PD-L1− CD66b+ cells (yellow) and PD1− CD8+ T cells (red). Scale bars, 
100 μm (left) and 20 μm (right). The bar plots show the quantification results. 
n = 5. In g–q, n denotes biologically independent samples. For k, n, o and q, data 
are mean ± s.e.m. Statistical analysis was performed using two-sided Student’s 
t-tests (k and q), one-sided Student’s t-tests (n), two-sided paired t-tests  
(g, h, m, o and p) and two-way ANOVA (e and j).



146 | Nature | Vol 612 | 1 December 2022

Article

Fig. 10l–m). Furthermore, we performed the Ly6G blockade thera-
peutically in pTMC mice with the luciferase reporter (pTMC-Luc) 
(Fig. 4i). Ly6G blockade at 36 days after tumour formation (at 7 days) 
showed substantial reductions in bioluminescence signal and tumour 
burdens (Fig. 4j). Collectively, neutrophil depletion could attenuate 
macrophage recruitment and T cell suppression, resulting in tumour 
inhibition.

To further investigate the neutrophil dynamics during the anti-Ly6G 
treatment, we performed scRNA-seq of eight samples covering bone 
marrow, peripheral blood, tumour-adjacent liver tissues and tumours 
from two mice (Supplementary Fig. 4). Although most TANs diminished 
after the treatment, mNeu_09_Apoa2 retained and expanded relatively 
in the tumour. Correspondingly, its human counterpart, Neu_07_
APOA2, was associated with favourable prognosis. Furthermore, both 

human and mouse APOA2+ TANs exhibited unique lipid metabolism sig-
natures similar to hepatic lipid-associated macrophages39,40 and might 
therefore be lipid-associated neutrophils (Supplementary Note 9). 
Taken together, neutrophil depletion can alter the TAN composition 
and attenuate tumour progression in mouse models.

Discussion
On the basis of about 1.3 million cells from human and mouse, our 
large-scale, sorting-free single-cell analyses delineate a comprehen-
sive cellular landscape of PLC, enabling us to identify five TIMELASER 
subtypes and decode the neutrophil heterogeneity. The TIMELASER 
framework covers most cell populations and provides a non-biased 
stratification of baseline TIME subtypes manifesting spatial resolution. 
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Fig. 4 | Neutrophil heterogeneity and depletion in mouse models. a, UMAP 
plots showing the neutrophil clusters (top), tissue sources (bottom left) and 
developmental orders (bottom right) in mice. b, The tissue preference of 
neutrophil clusters in mice revealed by Ro/e (ratio of observed cell number to 
expected cell number). c, Heat map comparing representative gene expression 
across neutrophil clusters in humans and mice. d, The expression of Cd274 in 
neutrophil clusters (top) and different tissues (bottom) in mice. e, Schematic of 
the anti-Ly6G treatment procedure. f, Representative photos of tumours 
generated in anti-Ly6G and control groups. The ruler tick marks show mm.  
The bar plots (right) show the nodule numbers per liver and the ratio of liver 
weight to body weight. n = 15. g, FACS analyses showing the proportions of 

macrophages (n = 10) and CD8+ T cells (n = 10), and the expression of functional 
markers (PD1 and TIM3; n = 6) in tumours of the anti-Ly6G and isotype groups. 
h, The proportions of neutrophils (Ly6G) and proliferating malignant cells  
(Ki-67) assessed by IHC (n = 6). i, Schematic of the anti-Ly6G treatment in a 
therapeutic manner. j, Representative images and quantitative results of the 
tumour load examined by luminescence at 7 days and 36 days in i. n = 5. 
Representative photos of tumours at 36 days are also shown. For f–j, n values 
denote biologically independent samples; data are mean ± s.e.m. Statistical 
analysis was performed using two-sided Student’s t-tests (f–i and j (top)) and a 
one-sided Student’s t-test ( j, bottom).



Nature | Vol 612 | 1 December 2022 | 147

We speculate that in-depth analysis of these data, along with functional 
studies, will provide new insights for tumour-TIME and TIME-TIME 
crosstalk, assist to identify immune cell functions, and guide the 
identification of biomarkers or targets for immunotherapies41. The 
heterogeneity of neutrophils and their functions in tumorigenesis 
have been under intense investigation6–9. We identified a neutrophil 
spectrum that is broadly conserved between humans and mice, and 
clearly show their gene expression, gene signatures and developmen-
tal trajectories governed by different sets of transcription factors. 
Our investigation shows that TANs exhibit a collective pro-tumour 
phenotype, among which we speculate that the pro-tumour CCL4+, 
SPP1+ and PD-L1+ TANs are promising immunotherapy targets, either 
alone or in combination with immune checkpoint inhibitors. Further 
exploring the impact of neutrophils on immunotherapies and related 
confounding clinical factors would offer new opportunities to better 
understand TAN biology and propose translational research paths for 
treating liver cancer.
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Methods

Patient sample collection
This study was approved by the Research Ethics Committee of both 
Peking University First Hospital and Peking University People’s 
Hospital. Written informed consent was obtained from each patient. 
We performed a prospective screen of treatment-naive patients with 
liver cancer who underwent primary curative resection from March 
2019 to January 2020 at Peking University People’s Hospital. Fresh 
tumour and tumour-adjacent liver tissue (AL) samples (at least 2 cm 
from tumour tissues) were collected within 30 min after the opera-
tion. Peripheral blood (PB) samples were collected before the surgery.  
A total of 124 patients were enrolled and 160 samples were obtained for 
scRNA-seq, including 79 HCC, 25 ICC, 7 CHC, 2 hepatic haemangioma 
(HH), 1 adenosquamous carcinoma (ASC), 1 sarcomatoid carcinoma 
(SAR) and 9 secondary liver cancer (SLC, liver metastases from various 
primary sites) cases. Focusing on PLC, proportions of HCC, ICC and 
CHC patients were 69.9%, 22.1% and 6.2%, respectively, consistent with 
the PLC incidence worldwide. For 14 of 124 patients, AL and PB were 
collected in addition to tumours. We also performed whole-exome 
sequencing (WES) for 84 of these patients. No blinding or randomiza-
tion was performed for the human tumor samples, because this was an 
observational study. Detailed clinical characteristics and mutational 
profiles are summarized in Supplementary Tables 1 and  2, respectively.

Mouse models
Trp53 fl/fl and Alb-cre mice (both C57BL/6) were purchased from the 
Jackson Laboratory and bred in a pathogen-free environment accord-
ing to the guidelines of the animal facility in Peking University First 
Hospital. Trp53 fl/fl mice were crossed with Alb-cre mice to generate 
the liver conditional Trp53-knockout (Trp53 cKO) mice. 7-week-old 
male Trp53 cKO mice were used for subsequent experiments. Sleep-
ing beauty transposase (SB100) and transposon pT3-Neo-EF1a-GFP 
plasmids were purchased from Addgene. cDNA of mouse Myc gene was 
cloned into the transposon vector through the MluI and SpeI restriction 
enzyme sites, obtaining the pT3-Neo-EF1a-Myc plasmid. Next, mutated 
forms of mouse Ctnnb1 (∆90Ctnnb1) or mouse Kras (KrasG12D) were 
generated by PCR cloning of mouse Ctnnb1 or Kras cDNA. Then, the 
Myc and ∆90Ctnnb1 transposon plasmid (pT3-EF1a-Myc-∆90Ctnnb1, 
pTMC) was generated through the AscI and NotI restriction sites. Simi-
larly, the Myc and KrasG12D transposon plasmid (pT3-EF1a-Myc-KrasG12D, 
pTMK) was generated. For construction of the pTMC-luciferase plasmid 
(pTMC-Luc), the luciferase fragment was linked to Myc by P2A using 
In-Fusion cloning. Plasmids for hydrodynamic tail-vein (HDTV) injection 
were prepared using the EndoFree-Maxi Kit (Qiagen). For HDTV, a total 
of 30 μg DNA mixture (5:1 ratio of transposon to transposase-encoding 
plasmid) was suspended in 0.9% saline solution at a final volume equal 
to 10% of body weight of the mice, and was then injected into 7-week-old 
male Trp53-cKO mice through the tail vein within 5–7 s (ref. 42). All of the 
mice were housed in pathogen-free conditions at an ambient tempera-
ture 20–26 °C and humidity of 30–70% with a 12 h–12 h light–dark cycle 
before use. The body weight of mice was monitored twice every week 
for signs of dynamic tumour growth. The diameter of single tumour 
was <2 cm.  For cKO mouse models, body-weight-matched mice were 
randomized over the treatment groups, anti-Ly6G and isotype control. 
For pTMC-Luc mouse model, tumor size was monitored by lumines-
cence signals at day 7 after HDTVi, and tumor-size-matched mice were 
randomized over the treatment groups, anti-Ly6G and isotype con-
trol. No blinding was performed for mouse samples, because this was an 
observational study. All of the mouse experiments were approved by 
the Animal Care and Use Committee at Peking University First Hospital.

scRNA-seq analysis of human and mouse samples
Fresh tumour and AL samples were cut into approximately 1 mm3 
pieces in RPMI-1640 medium (Thermo Fisher Scientific) with 10% fetal 

bovine serum (FBS, Gibco) and enzymatically digested using the MACS 
tumour dissociation kit (Miltenyi Biotec) for 30 min on a rotor at 37 °C, 
according to the manufacturer’s instructions. After filtering using the 
70 μm CellStrainer (BD) in RPMI-1640 medium, the suspended cells 
were centrifuged at 400g for 5 min. After removing the supernatant, 
cell pellets were resuspended in sorting buffer (PBS supplemented 
with 2% FBS) after washing twice with PBS. Moreover, 10 ml of fresh PB 
samples were collected before surgery in EDTA anticoagulant tubes. 
For PB samples, RBC removal was performed using the ErythroClear 
kit (STEMCELL) according to the manufacturer’s instructions. After 
collecting single-cell suspensions for different samples, 10 μl of each 
cell suspension was counted using an automated cell counter (Luna-II, 
Logos Biosystems) to assess the number of live cells. Throughout the 
dissociation procedure, cells were maintained on ice whenever pos-
sible. The entire procedure was completed in less than 1 h (typically 
~45 min) to avoid dissociation-associated artifacts. Cell viability and 
concentration were then assessed using the Rigel S3 fluorescence cell 
analyser (Countstar).

To avoid biases introduced by any enrichment steps on the cellular 
composition of queried samples, the original unsorted single-cell sus-
pensions were directly used for subsequent library construction. Cells 
were loaded onto the Chromium single cell controller (10x Genomics) 
to generate single-cell gel beads in the emulsion according to the manu-
facturer’s protocol. scRNA-seq libraries were constructed using Single 
Cell 3′ Library and Gel Bead Kit v3.1 and sequenced using the NovaSeq 
6000 sequencer (Illumina).

scRNA-seq data processing
scRNA-seq data were aligned and quantified using the CellRanger 
toolkit v.3.1 against the reference genome GRCh38 and GRCm39 for 
human and mouse samples, respectively. Empty droplets were filtered 
using the emptyDrops function of the R package dropletUtils v.1.10.3 
by assessing whether the RNA content associated with a cell barcode is 
significantly distinct from the ambient background RNA present within 
each sample. Cells with FDR < 0.01 (Benjamini–Hochberg-corrected) 
were selected for further analysis. The quality of cells was assessed 
based on three metrics: (1) the number of total UMI count per cell 
(library size) was below 30,000; (2) the number of detected genes 
was above 500 and below 6,000; (3) the percentage of mitochondrial 
genes was below 50. As neutrophils showed very low transcript counts 
as reported24, the range of detected gene number of neutrophils was 
set as 100–6,000. Next, we used a cluster-level approach to remove 
potential doublet cells. In brief, the doublet score was calculated for 
each cell using doubletCells function of the scran R package v.1.18.7. 
Cell clusters in each sample were identified by examining the top 50 
principal components (PCs) across highly variable genes (HVGs), 
building neighbour graph by buildSNNGraph function, and then clus-
tering using the cluster_louvain function from the igraph R package 
v.1.2.9. The median doublet score of each cell cluster was calculated 
using median-centred MAD-variance normal distribution. Clusters 
with a median score above the extreme top end of this distribution  
(Benjamini–Hochberg-corrected P < 0.1) were considered as doublets. 
After quality control, a total of 1,297,609 cells comprising 1,092,172 
cells from 160 human samples (124 patients) and 205,437 cells from 
29 mouse samples (8 mice) were retained for downstream analysis. 
Raw counts and log2 (normalized counts) were computed for each cell.  
As immune and stromal cells from different patients mixed well, we 
did not observe obvious batch effect. Gene–cell count matrices from 
different samples were merged using Seurat (v.3.2.3)43.

Cell clustering and annotation
To identify major cell types, we used scanpy (v.1.6) Python package44. 
A total of 2,000 HVGs were selected using the highly_variable_genes 
function, and then the top 50 PCs were calculated using the pca func-
tion. We regressed out the effect of percentage of mitochondrial genes 



and scaled each gene to unit variance. Nearest neighbourhood graphs 
were built using the neighbours function, and the community algorithm 
was applied for clustering using the louvain function (resolution = 1). 
The dimensionality of each dataset was reduced using UMAP.

We first annotated the 14 major cells types identified in our dataset 
on the basis of well-known marker genes, including CD3D, CD8A, CD4, 
FOXP3, TRDC, NKG7, CD79A and MS4A1 for lymphoid lineage (CD8+ T,  
conventional CD4+ T, T regulatory, γδT, natural killer and B cells); 
CD14, CD16, CD68, CD163, CD1C, LAMP3, TPSAB1, CSF3R and S100A8 for 
myeloid lineage (monocytes, macrophages, dendritic cells, mast cells 
and neutrophils); VWF and COL1A1 for stromal cells (endothelial cells  
and fibroblasts); and ALB and EPCAM for epithelial cells. Epithelial 
 cells, composed of hepatocytes, cholangiocytes and progenitor cells, 
were analysed as a whole in cluster analysis. Among these epithelial 
cells, malignant cells were further distinguished from non-malignant 
cells by inferring large-scale copy-number variations (CNVs) of each cell  
using inferCNV (v.1.3.3) R package as described45. As non-malignant 
cells derived from ALs were annotated, we used the average patterns 
of these cells as a reference for the CNV estimation.

Next, we performed a second round of clustering to further charac-
terize subpopulations of major cell types in the TIME. We converted 
the scanpy object to Seurat object using the anadata Python package 
(v.0.7.5) and then clustering using Seurat (v.3.2.3)43. To avoid unex-
pected noise and expression artefacts by dissociation, a total of 1,514 
genes associated with mitochondria (50 genes), heat-shock protein 
(178 genes), ribosome (1,253 genes) and dissociation (33 genes) were 
excluded (Supplementary Table 1). Owing to variable amount and 
property of cells in each major cell type, different parameters for 
clustering were used. For the clustering of T cells, top 20 PCs were 
selected on the basis of 2,000 HVGs (resolution = 1). For the clustering 
of natural killer or B cells, the top 10 PCs were selected on the basis of 
1,000 HVGs (resolution = 0.6). For monocytes or dendritic cells, the top 
10 PCs were selected on the basis of 1,000 HVGs (resolution = 0.8). For 
macrophages, the top 10 PCs were selected on the basis of 1,500 HVGs 
(resolution = 1). For endothelial cells or fibroblasts, the top 15 PCs were 
selected on the basis of 1,000 HVGs (resolution = 1). For neutrophils, 
the top 8 PCs were selected on the basis of 500 HVGs (resolution = 0.8). 
Specifically, the resolution of neutrophil clusters was determined on 
the basis of its biological features. Here we took a scRNA-seq dataset 
of neutrophils from PB as a reference23. The reported three neutrophil 
subsets (G5a–c) in PB were recapitulated with resolutions of 0.7 and 
0.8, with the latter having a better separation of neutrophil clusters.

As a result, we identified 13 CD8+ T, 8 conventional CD4+ T, 3 T regula-
tory, 4 γδ T, 7 natural killer and 4 B cell clusters for the lymphoid lineage, 
5 monocyte, 9 macrophage, 7 DC, 1 mast cell and 11 neutrophil clusters 
for the myeloid lineage, and 10 endothelial cell and 7 mesenchymal 
clusters35,46 for the stromal components. To facilitate data visualization 
in Fig. 1c, cells were reclustered into four embeddings using Seurat, 
including (1) T cells, (2) natural killer and B cells, (3) myeloid cells and 
(4) endothelial cells and mesenchymal cells. Next, we used the Find-
Markers or FindAllMarkers function to identify differentially expressed 
genes (DEGs) with adjusted P < 0.05 using Bonferroni correction. Gene 
Ontology analysis was performed using the clusterProfiler R package 
(v.3.18.1).

Experimental and analytical strategies for neutrophils
As neutrophils are very fragile and have a relatively low level of RNA con-
tent, both experimental and analytical procedures were improved to 
capture neutrophils during this study. For scRNA-seq experiments, we 
kept a minimal hands-on time for the tissue samples. When single-cell 
suspensions were collected, only the MACS Dead Cell Removal Kit 
(Miltenyi Biotec) was used to collect viable cells and no FACS enrich-
ment steps were applied, therefore limiting the experimental process 
from tissue collection (for both tumour and adjacent liver tissues) after 
surgery to PCR with reverse transcription within 2 h. Prolonging the 

processing time may cause the failure of neutrophil capture. For data 
analysis, we set the range of detected UMI as 100–6,000 for neutro-
phils, while keeping that of other cell populations as 500–6,000 for 
downstream analysis. A total of 34,307 neutrophils were identified on 
the basis of the expression of CSF3R, S100A8 and S100A923,24. Eleven 
subsets of human neutrophils were characterized (Fig. 3a and Extended 
Data Fig. 7b–d) and exhibited clear separation according to the tissue 
sources of PB, AL and tumour (Fig. 3a,b and Extended Data Fig. 7e), 
consistent with the previous notion that neutrophils exhibited tissue 
specificity6–9. SingleR (v.1.10.0)47 was also used to assess the similarity 
of neutrophil clusters in this study compared to previously reported 
neutrophil subsets. Neu_02_S100A12, Neu_03_ISG15 and Neu_04_TXNIP 
were mainly composed of PBNs, matching the reported circulating 
G5a, G5b and G5c states23,24 (Extended Data Fig. 7f). Neu_05_ELL2 and 
Neu_06_PTGS2 were mainly ALNs. All of the other six subsets (Neu_01_
MMP8, Neu_07_APOA2, Neu_08_CD74, Neu_09_IFIT1, Neu_10_SPP1 and 
Neu_11_CCL4) were enriched in tumours and therefore designated as 
TANs. These TANs were differentially enriched across PLC subtypes, 
with Neu_01_MMP8 and Neu_07_APOA2 in HCC, and Neu_09_IFIT1, 
Neu_10_SPP1 and Neu_11_CCL4 in ICC (Fig. 3b).

Calculation of gene signature scores based on scRNA-seq data
Multiple gene signature scores were calculated on the basis of the 
scRNA-seq data. For each gene signature, individual cells were scored 
using the AddModuleScore function, which calculated the average 
expression levels of selected genes at the single-cell level and sub-
tracted by the aggregated expression of control feature sets. Control 
features were composed of 100 randomly selected genes from each 
bin where all features were binned into 24 groups based on averaged 
expression. For malignant cells, hepatic score was calculated based 
on the expression of 21 hepatocyte-related genes18 (ADH1A, ADH4, 
AFM, AHSG, AMBP, C4BPB, C6, CYP2E1, CYP4F2, F9, FGA, FGB, FGG, 
GC, HPX, PROC, SAA4, SERPINA6, SERPINC1, SERPIND1 and SLC2A2). 
Biliary epithelial score was calculated based on the expression of 13 
cholangiocyte-related genes (KRT14, KRT17, KRT6A, KRT5, KRT19, 
KRT8, KRT16, KRT6B, KRT15, KRT6C, KRTCAP3, SFN and EPCAM). For 
neutrophils, scores for azurophil granule, specific granule, gelatinase 
granule, secretory vesicle, neutrophil maturation and neutrophil age-
ing were calculated23 (Supplementary Table 3). Other functional signa-
tures for neutrophil activation (GO:0042119), neutrophil chemotaxis 
(GO:0030593), apoptosis (GO:0043065), angiogenesis (GO:0001525), 
extracellular matrix (GO:0031012), phagocytosis (GO:0006911), type 
I interferon signalling pathway (GO:0060337) and chemokine activity 
(GO:008009) were derived from the Gene Ontology database.

Tissue and cancer type enrichment of clusters
To quantify the enrichment of cell clusters across tissues (PB, AL and 
tumour) and PLC subtypes (HCC, ICC and CHC), we compared the 
observed and expected cell numbers in each cluster by computing 
the Ro/e value using the epitools (v.0.5-10.1) R package according to 
the following formula15:

R =
Observed
Expected

,o/e

where the expected cell numbers for each combination of cell clusters 
and tissues were obtained from the χ2 test. We assumed that one cluster 
was enriched in a specific tissue or cancer type if Ro/e > 1.

Identification of cellular modules and TIMELASER subtypes
To examine the potential cellular compositions of different TIME eco-
systems in liver cancer, we investigated the co-existence patterns of 
different TIME cell subpopulations. Pairwise correlation values between 
the normalized frequency of any two clusters across different tumour 
samples were calculated using the corr.test function. These values were 
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then clustered using the pheatmap (v.1.0.12) R package with the ward.
D2 cluster method and correlation distance. To avoid potential distor-
tion of clustering due to the low frequency of certain clusters (present 
in less than 10 tumours), tumour cells fall into 13 PB-enriched clusters 
(CD4T_01_CCR7, CD4T_09_FOXP3, CD8T_01_CCR7, CD8T_02_CX3CR1, 
CD8T_03_GZMK_S1PR1, γδT_01_GNLY_S1PR5, NK_01_FCGR3A_CX3CR1, 
MonoDC, Mo_01_CD14, Mo_02_CD16, Neu_02_S100A12, Neu_03_ISG15 
and Neu_04_TXNIP) and 2 additional clusters (Neu_01_MMP8 and Fb_06_
FABP3) were excluded from this analysis. As a result, we identified five 
highly correlated cellular modules. For each patient, cluster-normalized 
frequencies of clusters from the same cellular module were summed 
and the most abundant cellular module was designated as the dominant 
cellular module for this patient. Each cellular module corresponds to 
a TIMELASER subtype, of which the phenotype was designated based 
on four aspects: (1) cell populations, (2) marker genes, (3) TIME-related 
gene signatures as previously defined26 and (4) prognostic relevance, 
which combinatorically support the phenotype of our TIME subtypes 
(Extended Data Fig. 5e,f and Supplementary Table 3).

Classification of TIMELASER subtypes for bulk RNA-seq data
To apply our single-cell based TIMELASER subtypes to published bulk 
RNA-seq data, we defined gene signatures for each subtype by com-
bining top 8 DEGs of all clusters in the corresponding cellular module 
(Supplementary Table 3). For each patient, z-scores of 5 TIMELASER 
signatures were computed. First, TIMELASER signature scores were 
calculated on the basis of the average expression of signature genes, 
and then subtracted by the aggregated expression of control features. 
Control features were composed of 100 randomly selected genes from 
each bin where all features were binned to 24 groups based on averaged 
expression. Next, z-scores of five TIMELASER signatures were calculated 
by scaling five scores in the same sample. The TIMELASER subtype of 
each patient was then determined on the basis of the highest signature 
score across five z-scores. For example, we assembled a bulk RNA-seq 
dataset of 453 patients with PLC collected from three published studies, 
including TCGA-LIHC (HCC study of TCGA)30, TCGA-CHOL (ICC study of 
TCGA)31 and our previous study of CHC32. Classification of TIMELASER 
subtypes was performed for this large cohort dataset.

To compare our single-cell-based TIMELASER subtypes with the bulk 
RNA-seq data based molecular functional portrait subtypes26, we calcu-
lated the expression levels of molecular functional portrait signatures 
for each individual in our dataset (Supplementary Table 3). We first 
calculated the average expression of a certain gene across TIME cells 
in each patient using the AverageExpression function. The signature 
scores were then calculated by the mean expression of involved genes.

WES
DNA was extracted using the DNeasy Blood & Tissue Kit (Qiagen) from 
fresh-frozen tumour and AL samples. A total of 200 ng to 1 μg DNA was 
taken from each sample and sheared into fragments of ~300 bp using a 
Covaris S2 ultrasonicator. The library was constructed using the NEB-
Next Ultra DNA Library Prep Kit for Illumina and exome regions were 
captured using Agilent SureSelect All Exon V6. The post-hybridization 
amplification product was quality-checked and sequenced. Paired-end 
Illumina reads were aligned to the human genome hg38 (UCSC) using 
BWA-mem2 (v.2.0pre1) with the default parameters. SAM files were then 
converted to BAM files and sorted by chromosomal coordinates using 
Samtools (v.1.10). The Genome Analysis Toolkit (GATK, v.4.1.7.0) was 
used to remove PCR duplicates and recalibrate the base quality score. 
Point mutations and indels were identified using Mutect2 (v.4.1.0.0) and 
VarScan (v.2.4.2). All variants were annotated using ANNOVAR. A series 
of filtering criteria were applied to the variant candidates: (1) at least 10× 
coverage was required in the normal sample of each patient bearing at 
most 1× mutation coverage; (2) at least 10× total coverage was required 
in tumour samples with at least 3× mutation coverage; (3) variations 
listed in dbSNP 150 were removed unless they were documented in the 

Catalog of Somatic Mutations in Cancer (COSMIC) database. Finally, 
point mutations identified by Mutect2 and indels identified by both 
Mutect2 and VarScan were retained after filtering. All of the variants 
were annotated using the VEP (v.96; Ensembl Variant Effect Predictor). 
Tumour ploidy and cellularity were inferred using ABSOLUTE (v.1.0.6). 
CNVkit (v.0.9.7) was then performed using the default parameters 
on paired tumour–normal WES data. After segmentation, GISTIC2 
(v.2.0.23; Genomic Identification of Significant Targets in Cancer) was 
applied to identify focal CNVs.

Gene modules of malignant cells
Gene modules of malignant cells were extracted as described previ-
ously35. For each individual tumour with more than 50 malignant cells, 
clusters were calculated using Seurat (v.3.2.3) at five resolutions (0.5, 
0.8, 1, 1.2, 1.5). For each cluster, the top 200 DEGs were identified and 
only clusters with more than five tumour cells and more than five DEGs 
were retained. The DEGs of these clusters were then defined as a gene 
signature. The redundancy of gene signatures identified from the five 
resolutions was reduced by a pairwise comparison of gene signatures 
within each sample. For each pair with a Jaccard index > 0.75, the gene 
signature with fewer genes was removed. Across all tumours, 1,187 gene 
signatures were identified. Consensus clustering of the Jaccard simi-
larities between these gene signatures identified eight gene modules. 
Highly recurrent genes were identified for each gene module and the 
enriched pathways were calculated using ClusterProfiler (v.3.18.1).

Cell–cell interactions
To investigate cell–cell interactions among clusters from each cel-
lular module, we analysed the L–R pairs using CellphoneDB (v.2.1.7) 
as described previously48. In brief, a log2-normalized count matrix 
was subsampled into 500 cells per cluster. Significant L–R pairs were 
identified after filtering for frequencies below 0.1% or above 2% of all 
cluster–cluster combinations. For each L–R pair, the total number of 
this L–R pair across clusters from the same cellular module was counted. 
Cellular-module-specific L–R pairs were then determined based on the 
enrichment score by Ro/e values (Ro/e > 3). To identify potential ligands 
that drive the unique phenotype of Neu_09_IFIT1, we compared the 
transcriptomic differences between Neu_03_ISG15 and Neu_09_IFIT1, 
and then used the highly expressed genes in Neu_09_IFIT1 for NicheNet 
(v.1.1.0) analysis. Genes with log2[fold change] > 0.2 and adjusted 
P < 0.05 were then used as gene sets of interest. Genes were consid-
ered to be expressed when they had non-zero values in at least 10% of 
the cells in a cell type.

Developmental trajectory
CytoTRACE (v.0.3.3)49, Monocle (v.2.12)50, and CellRank (v.1.5.1)51 were 
adopted to infer the developmental trajectory of human and mouse 
neutrophils. CytoTRACE is based on the notion that transcriptional 
diversity, that is, the number of genes expressed in a cell decreases 
during differentiation. The log2-normalized expression matrix was 
accessed. The predicted orders were projected onto the neutrophil 
UMAP space. For Monocle 2, we built a new CellDataSet object from 
cluster-annotated Seurat object using the newCellDataSet function. 
We used the differentialGeneTest function to derive DEGs from each 
cluster, and genes with q < 1 × 10−5 were used to order the cells in pseu-
dotime. Dimension reduction was performed using the DDRTree algo-
rithm and then cells were ordered along the trajectory. Moreover, the 
CytoTRACE scores were also projected on the Monocle trajectory. 
CellRank was performed to map the cell fate of neutrophil subsets 
after anti-Ly6G treatment as described.

Regulon network
The regulon network was explored using the R package SCENIC 
(v.1.1.3)52, which analysed the co-expression of transcriptional factors 
and their putative target genes. We built and scored gene regulatory 



network using the default parameters. Raw count matrix was used 
to build co-expression network using the runCorrelation and runG-
ENIE3 functions. Potential regulons based on DNA-motif analysis were 
selected by RcisTarget and active gene networks were identified by 
AUCell. Regulon activity for each cell was calculated as the average 
normalized expression of putative target genes.

Cross-species data integration
Cross-species single-cell data integration was performed using the 
LIGER v.1.0 workflow53. In brief, single-cell datasets of mouse and human 
neutrophils were preprocessed to produce a raw digital gene expression 
matrix using createLiger and then normalized. Variable genes were 
selected and the gene expression was scaled using scaleNotCenter. 
Shared and species-specific factors were identified through integrative 
non-negative matrix factorization using optimizeALS. Joint clustering 
of cells was performed by louvainCluster and then visualized using 
UMAP.

Survival analysis
Prognostic values of cell clusters and cellular modules were evalu-
ated in our cohort. Kaplan–Meier survival curves were plotted using 
ggsurvplot function in the R package Survminer v.0.4.9.

IHC and mIHC
Formalin-fixed and paraffin-embedded (FFPE) tissues sectioned to 
4 μm were used for histology evaluation of liver tumours in both 
human and mouse models. Haematoxylin and eosin (H&E) staining 
was performed for each sample. For IHC and mIHC, tissue slides were 
deparaffinized with xylene and rehydrated through a graded series of 
ethanol solutions (100%, 95% and 70%). Then, slides were treated by 
microwave to induce antigen retrieval using citric acid solution for 
15 min. For mouse tumours, primary antibodies for anti-hepatocyte 
(1:500, ab75677, Abcam), anti-EPCAM (1:200, ab213500, Abcam), 
anti-Ly6G (1:500, GB11229, Servicebio), anti-Ki-67 (1:500, ab15580, 
Abcam) and anti-CD68 (1:200, GB113109, Servicebio) were used. Each 
section was evaluated by 2–3 experienced pathologists. For mIHC analy-
sis of human samples, three panels of primary antibodies were used, 
including, (1) CD66b (1:1,000, GTX19779, GeneTex) and CCL4 (1:800, 
ab235961, Abcam); (2) Von (1:100, ab9378, Abcam), α-SMA (1:5,000, 
ab7817, Abcam), CD8 (1:100, ZA0508, ZSGB), GZMK (1:1,000, ab282703, 
Abcam); (3) CD8 (1:100, ZA0508, ZSGB), PD1 (1:50, ZM0381, ZSGB), 
CD66b (as in panel 1) and PD-L1 (1:1,000, ab237726, Abcam). The slides 
were then incubated with secondary antibodies (1:1,100 μl for each 
slide; HRP-anti-rabbit IgG, ZSGB, PV-6001; or HRP-anti-mouse IgG, 
ZSGB, PV-6002) for 10 min at room temperature. After each cycle of 
staining, heat-induced epitope retrieval was performed to remove all 
the antibodies including primary antibodies and secondary antibod-
ies. Multiplex immunofluorescence staining was performed using the 
AlphaTSA Multiplex IHC Kit (AXT36100031, AlphaX). The samples 
were counterstained for nuclei with DAPI for 10 min and mounted in 
mounting medium. Multispectral images were scanned with ZEISS 
AXIOSCAN 7. Cells of interest were quantified using Halo (v.3.4; Indica 
Labs) or QuPath (v.0.2.0).

CODEX
CODEX was performed on FFPE tissues according to the manufacturer’s 
instructions (Akoya Biosciences)54. In brief, 4 μm tissue sections were 
mounted on poly-l-Lysine-coated coverslips and then deparaffinized 
and rehydrated. The tissue-retrieval process is the same as for IHC. 
Tissues were then fixed using prestaining fixing solution and then 
washed using tissue hydration buffer. For each coverslip, the antibody 
cocktail (containing β-catenin, CD3e, CD4, CD8, CD11c, CD20, CD31, 
CD45RO, CD68, E-cadherin, HLA-DR, keratin14, Ki-67, MAC2/galectin-3 
and pan-cytokeratin) was then added to the coverslip and staining 
was performed in a sealed humidity chamber for 3 h. After staining, 

coverslips were washed for 4 min by staining buffer and fixed in wells 
containing 1.6% paraformaldehyde for 10 min, followed by three washes 
in PBS. The coverslips were then incubated in 100% methanol on ice 
for 5 min, followed by three washes in PBS. Fresh fixative solution was 
prepared immediately before final fixation, and final fixation was per-
formed at room temperature for 20 min, followed by three washes in 
PBS. Next, the CODEX reporter plate containing the reporter master 
mix for every cycle was prepared accordingly. The CODEX multicycle 
reaction and image acquisition were performed using the Akoya CODEX 
instrument. During imaging, the tissue was kept in H2 buffer. Hybridiza-
tion of the fluorescent oligonucleotides was performed in rendering 
buffer. After imaging, fluorescent oligonucleotides were removed using 
stripping buffer. Data processing and analysis were performed using 
CODEX analysis manager and CODEX Multiplex Analysis Manager.

Isolation of immune cells from PB
PB samples (20 ml) were collected from healthy human donors or 
patients with liver cancer. Density gradient separation was performed 
with Lymphoprep (STEMCELL, 07861). The layer of peripheral blood 
mononuclear cells was sent for isolation of CD8+ T cells with anti-CD8 
magnetic beads (STEMCELL, 17853), followed by isolation of monocytes 
with anti-CD14 magnetic beads (STEMCELL, 19359). The bottom layer 
of erythrocyte/granulocyte pellet was resuspended with Red Cell Lysis 
Buffer (TIANGEN). Lysis was stopped using RPMI-1640 medium sup-
plemented with 2% FBS, followed by centrifugation at 400g for 10 min. 
Cells were washed twice with PBS and filtered through a 70 μm nylon 
mesh (FALCON).

Isolation of neutrophils
Neutrophils were isolated from PB, AL and tumours from selected 
patients. For PB, neutrophils were extracted from the lower layer of 
the erythrocyte/granulocyte pellet after red blood cells were removed 
using the ErythroClear kit (STEMCELL). Cells were washed twice with 
PBS and filtered through a 70 μm nylon mesh (Falcon). Anti-CD66b 
antibodies (BD, 561650) coupled with magnetic anti-PE microbeads  
(STEMCELL, 17694) were used to purify neutrophils. For AL and 
tumours, single-cell suspensions of tissues were collected as descried 
for scRNA-seq, centrifuged at 300g for 5 min and resuspended in 36% 
Percoll (Sigma, P4937, diluted with PBS), followed by centrifugation at 
500g for 15 min. Cell pellets were collected and washed twice with PBS. 
Anti-CD66b antibodies (BD, 561650) coupled with magnetic anti-PE 
microbeads (STEMCELL, 17694) were further used to purify neutro-
phils. For survival analysis, PBNs were cultured for 4 days and tested for 
viability at multiple time points using the Cell Counting Kit-8 (Bestbio). 
A total of 24.97% and 4.99% of PBNs remained alive after 1 and 3 days, 
consistent with the lifespan of cultured human neutrophils55.

Co-culture of PBNs with cell lines
The human embryonic kidney cell line (HEK293T, ATCC number, CRL-
3216) and the liver cancer cell line (HepG2, ATCC number, HB-8065) were 
obtained from American Type Culture Collection (ATCC). Human liver 
cancer cell lines (HCCLM3 and MHCC97H) were obtained from the Liver 
Cancer Institute, Zhongshan Hospital, Fudan University (Shanghai,  
China). All cell lines used in this study were authenticated by apply-
ing short tandem-repeat (STR) DNA profiling and tested negative for 
mycoplasma. All cells were cultured in RPMI1640 medium (Corning) 
supplemented with 10% fetal bovine serum (FBS) (VISTECH), 100 U ml−1 
of penicillin and 100 μg ml−1 of streptomycin (Hyclone) in a humidified 
incubator at 37 °C with 5% CO2. PBNs (1 × 106) were placed in the top 
insert of a Transwell (0.4 μm, Corning) and tumour cells were placed 
in the bottom chamber of a 12-well plate and co-cultured for 0 h, 6 h, 
12 h, 18 h, 24 h and 30 h. After co-culture, PBNs were sent for qPCR, 
bulk RNA-seq and FACS analysis, including staining with anti-CD45 
(BD, 557833), anti-CD66b (BD, 561650) and anti-PD-L1 (BD, 557924) 
antibodies.
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Co-culture of neutrophils with CD8+ T cells
For the co-culture experiment involving PBNs, cell lines and CD8+ T  
cells, CD8+ T cells and PBNs were isolated from the same donor at dif-
ferent time points. At day 1, CD8+ T cells were purified and then stimu-
lated with 25 μg ml−1 CD3/CD28 T Cell Activator (STEMCELL, 10971) and 
50 U ml−1 rhIL-2 (STEMCELL, 78036.1) for 3 days. At day 3, PBNs from the 
same donor were isolated and placed in the lower chamber of a 12-well 
plate. Tumour cells were placed in the top insert of Transwell (0.4 μm, 
Corning). After co-culture of PBNs with cell lines for 12 h, CD8+ T cells 
were added to the bottom chamber at a 1:5 ratio of CD8+ T cells to PBNs 
and co-cultured for 24 h and 48 h.

For the co-culture experiment involving PBNs, ALNs and TANs with 
CD8+ T cells, PBNs were extracted as described above, whereas ALNs and 
TANs were purified from single-cell suspensions of tumour and adjacent 
liver tissues with anti-CD66b antibodies coupled with magnetic anti-PE 
microbeads from the EasySep PE Selection Kit (STEMCELL). Purified 
PBNs, ALNs and TANs were directly co-cultured with CD8+ T cells in a 
12-well plate at a 1:2.5 ratio of CD8+ T cells to PBNs for 24 h.

After the co-culture, these mixed cells were separated by a BD FAC-
SAria SORP flow cytometer using FACSDiva (v.8.0.1), and the data were 
analysed using FlowJo (v.10.4). Antibodies against CD45 (BD, 557833), 
CD3 (BD, 562426), CD8 (BD, 560179) and CD11b (BioLegend, 101256) 
were used to gate CD8+ T cells and neutrophils. PD-L1 antibodies (BD, 
557924) were used to assess the immunosuppression of neutrophils. 
IFNγ (BD, 557643), GZMB (BD, 561142) and PRF1 (BD, 563762) antibodies 
were used to assess the cytotoxicity of CD8+ T cells. CD69 (BD, 562884) 
and CD25 (BD, 563701) antibodies were used to assess the activation 
status of CD8+ T cells. CFSE (BD, 565082) was used to assess the prolif-
eration of CD8+ T cells. For PD-L1 neutralization, anti-PD-L1 (BE0285, 
Bio X cell) and the control IgG (BE0086, Bio X cell) were used in the 
co-culture experiments.

Chemotaxis
PBNs, ALNs or TANs (5 × 105) were suspended in RPMI1640 medium 
and placed in the bottom chamber of a 12-well plate. Purified CD14+ 
monocytes (2 × 105) were placed in the top insert of a Transwell (5 μm, 
Corning) and incubated in macrophage differentiation medium with 
100 ng ml−1 M-CSF (STEMCELL, 78059). After co-culture of PBNs with 
monocytes for 48 h, monocytes that migrated and attached to the 
low surface of the Transwell membrane were fixed with 4% paraform-
aldyhyde, and stained with 1% crystal violet. The number of migrated 
monocytes was calculated using Image J (v.1.52k).

RNA isolation and qPCR
Total RNA was isolated using the Trizol RNA Isolation kit (Invitrogen). 
The Reverse Transcription Reagents kit (TIANGEN) was used for cDNA 
synthesis from total RNA. qPCR was performed in triplicates using the 
AriaMx Real-Time PCR System (G8830A). Gene expression of 
chemokines (CCL2, CCL3, CCL4 and CCL5) and CD274 were quantified 
by the comparative Ct method (2 C−ΔΔ t) with GAPDH as an internal con-
trol. The fold change of each gene was calculated at different time points 
versus 0 h. A list of the primers used for the queried genes is provided 
in Supplementary Table 5.

Bulk RNA-seq
RNA-seq libraries were constructed using the NEBNext Ultra RNA 
Library Prep Kit (New England Biolabs) according to the manufacturer’s 
protocol. The library was quality-checked and sequenced using the 
NovaSeq 6000 sequencer (Illumina). The quality of sequencing reads 
was evaluated using FastQC. Adaptor sequences and low-quality score 
bases were trimmed using trimmomatic (v.0.36). These reads were then 
mapped to human genome reference GRCh38 from Ensembl release 98 
using STAR (v.2.5.2b). The fragments per kilobase of exon per million 
mapped reads (FPKM) values and gene count values were computed 

using RSEM (v.1.3.1) and DEGs were analysed using the DESeq2 (v.1.24) 
R package.

ATAC-seq
Fresh neutrophils (1 × 104–5 × 104 cells) isolated from different tis-
sues of patients with liver cancer were immediately sent for bulk 
ATAC-seq using the TruePrep DNA Library Prep Kit V2 for Illumina 
(Vazyme, TD501). Raw sequencing reads were trimmed using trimmo-
matic (v.0.39) and then mapped to the GRCh38 human genome using  
Bowtie2 (v.2.4.4). PCR duplicates were removed using MarkDupli-
cates from PicardTools (v.2.23.3). Peaks were called with MACS3 
(v.3.0.0a7) and peaks that were found in at least two biological rep-
licates were retained and merged for further analysis. Significantly 
differentially accessible peaks were identified with adjusted P < 0.05, 
and fold change > 1.5 by DESeq2 (v.1.24). Normalized BigWig files 
were generated by DeepTools (v.3.5.1) and merged for visualization 
by pyGenomeTracks (v.3.6).

In vivo neutrophil depletion
The anti-Ly6G antibody (1A8, Bio X Cell) or IgG2a Isotype control (2A3, 
Bio X Cell) at a dose of 12.5 μg per 100 μl PBS was administered daily 
through intraperitoneal injection, starting 7 days before HDTV injection 
of the pTMC plasmid. After 33 days, mice were euthanized by carbon 
dioxide asphyxiation and the liver tumours were carefully separated 
from mice. The number of liver tumour nodules was quantified and 
the ratio of liver weight to body weight was calculated.

To deplete the neutrophils in a therapeutic manner, the pTMC-Luc 
mouse model was used. Mice were given fresh prepared d-luciferin 
(150 μg per g) intraperitoneally and incubated for 5 min and imaged 
using in vivo imaging system. In vivo luciferase bioluminescence sig-
nal was detected for an exposure time of 60 s using the Living Image 
software. At day 7 after the pTMC-Luc HDTV injection, the tumour can 
be visually detected by the bioluminescence signal, then the anti-Ly6G 
antibody (1A8, Bio X Cell, BE0075-1) or IgG2a (2A3, Bio X Cell, BE0089) 
isotype control was injected into mice at a dose of 25 μg per 100 μl PBS 
on a daily basis. At day 36, the bioluminescence signal was detected, 
and mice were euthanized. The ratio of liver weight to body weight 
was calculated. FACS analysis was performed using the following anti-
bodies, CD45 (BioLegend, 103116), CD3ε (BioLegend, 100353), CD8a 
(BD, 552877), CD11b (BioLegend, 101242), Ly6G (surface, BioLegend, 
127618; intracellular, BD, 551461), F4/80 (BioLegend, 123133) to gate 
CD8+ T cells, neutrophils and macrophages, respectively. Data were 
analysed using FlowJo (v.10.4) and the gating strategies are shown in 
Supplementary Fig. 5. PD-L1 antibody (BD, 558091) was used to assess 
the immunosuppression of neutrophils. PD-1 (CD279, BD, 562523) and 
TIM3 (BD, 566346) were used to assess the exhaustion of CD8+ T cells. 
The depletion efficiency of neutrophils was detected by both surface 
and intracellular Ly6G staining. In brief, the cell suspension was first 
stained with Ly6G-PE-Cy7 antibodies to cover the surface Ly6G protein. 
Cells were then fixed and permeabilized and intracellular proteins were 
stained with Ly6G-PE antibodies.

Statistical analysis
Statistical analyses were performed using GraphPad Prism (v.9.0) 
(for experimental data), and R (v.3.6.1), RStudio (v.3.5.3) and Python 
(v.3.7.4) (for sequencing data and matched clinical variables). Compar-
isons between groups were conducted using χ2 tests or Fisher’s exact 
test for categorical variables. Student’s t-tests, Wilcoxon rank-sum 
tests and ANOVA were used for continuous variables. Paired t-tests 
were used for paired comparisons. Survival analyses were conducted 
using log-rank tests. P < 0.05 was considered to be statistically signifi-
cant. No statistical methods were used to predetermine the sample 
size of scRNA-seq libraries. Unless otherwise noted, each experiment 
was repeated three or more times with biologically independent  
samples.



Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw sequencing data reported in this paper have been deposited at the 
Genome Sequence Archive at the National Genomics Data Center (Beijing,  
China) under the BioProject ID PRJCA007744. The data deposited and 
made public are compliant with the regulations of the Ministry of Sci-
ence and Technology of China. To facilitate the use of our data by the 
wider research community, we developed an interactive web-based 
tool (http://meta-cancer.cn:3838/scPLC) for analysing and visualizing 
our single-cell data. Other public data used in this study include refer-
ence genomes for human (https://asia.ensembl.org/, GRCh38.p13) 
and mouse (https://asia.ensembl.org/, GRCm39) and TCGA datasets 
(https://portal.gdc.cancer.gov/). Source data are provided with this 
paper.

Code availability
Codes used in this study are available at GitHub (https://github.com/
meta-cancer/scPLC).
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Patient cohort and cluster information. a, Pie charts 
showing the composition of cancer types in our cohort. HCC, hepatocellular 
carcinoma; ICC, intrahepatic cholangiocarcinoma; CHC, combined 
hepatocellular and cholangiocarcinoma; HH, hepatic hemangioma;  
ASC, adenosquamous carcinoma; SAR, sarcomatoid carcinoma; SLC, 
secondary liver cancer. CRC_M, liver metastasis from colorectal cancer, 
PAN_M, liver metastasis from pancreatic cancer, LYM_M, liver metastasis from 
lymphoma, GAS_M, liver metastasis from gastric cancer, BRC_M, liver 
metastasis from breast cancer. b, UMAP plots showing the distribution of 
patients, cancer types, viruses and liver cirrhosis states. Dots represent 
individual cells. PB, peripheral blood; AL, adjacent liver; HBV, hepatitis B virus, 
HCV, hepatitis C virus, NBNC, double negative of HBV and HCV. c, UMAP plots 
showing expression of canonical marker genes of major cell populations 
including T cells (CD3D, CD8A, FOXP3), NK cells (NKG7), B cells (CD79A), 
macrophages (CD68), neutrophils (CSF3R), dendritic cells (CLEC10A), mast cells 
(TPSAB1), fibroblasts (COL1A1), endothelial cells (VWF), and epithelial cells 
(EPCAM). d, Stacked barplot showing the distribution of major cell types in 
each sample. e, UMAP plots showing the distribution of cell identities for 

tumour cells and TIME cells. Tumour cells were further coloured by patient, 
cancer type, virus, and cirrhosis. f, CNV profiles inferred from scRNA-seq data 
for each cell and from matched bulk exome data in the sample A014_HCC.  
g, Boxplots showing hepatic scores and biliary epithelial scores in tumour 
(n = 193,877 cells) and TIME cells (n = 898,295 cells). Cells are from 124 patients. 
h, Boxplots showing hepatic scores and biliary epithelial scores in tumour cells 
of different PLC subtypes (HCC, n = 96,211 cells from 79 cases, ICC, n = 52,345 
cells from 25 cases, CHC, n = 15,493 cells from 7 cases). Cells are from 111 
patients. i, Pie charts showing the patient number (top) and cell number 
(bottom) of our study and published single cell studies for PLC. Colours 
represent different studies. j, Stacked barplot showing proportions of major 
cell populations among different studies. Colours represent major cell 
populations. In g-h, n denotes individual cells. Two-sided Wilcoxon rank-sum 
test is used. For boxplots, centre line shows median, box limits indicate upper 
and lower quartiles, and whiskers extend 1.5 times the interquartile range, 
while data beyond the end of the whiskers are outlying points that are plotted 
individually. ***, P < 0.001.
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Extended Data Fig. 2 | Gene expression and tissue preference of 89 TIME 
cell clusters. a, UMAP plots showing the expression of canonical marker genes 
for clusters in each major cell population. Normalized expression level was 
abbreviated as Exp. b, Heatmap showing tissue preferences of clusters in each 
major cell population revealed by Ro/e. c, Boxplots showing proportions of 
several tumour-enriched TIME clusters divided by PLC subtypes. *, P < 0.05; 
 **, P < 0.01; ***, P < 0.001. (HCC, n = 79 cases, ICC, n = 25 cases, CHC, n = 7 cases).  

d, Boxplots showing proportions of several cell clusters associated with virus 
or cirrhosis. (HBV, n = 57 cases, HCV, n = 6 cases, NBNC, n = 50 cases; cirrhosis, 
n = 46 cases, non-cirrhosis, n = 67 cases). In c-d, n denotes biologically 
independent samples. Two-sided Wilcoxon rank-sum test is used. For boxplots, 
centre line shows median, box limits indicate upper and lower quartiles, and 
whiskers extend 1.5 times the interquartile range, while data beyond the end of 
the whiskers are outlying points that are plotted individually.
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Extended Data Fig. 3 | Clusters, signatures, and prognosis of five 
TIMELASER subtypes. a, Heatmap showing frequencies of TIME cell clusters 
in 5 CMs. b, Forest plot showing the clinical relevance of clusters in each CM 
revealed by log10(hazard ratio) based on PFS. Cox regression. Log-rank test.  
c, Dot heatmap showing enriched pathways across TIMELASER subtypes. 
Benjamini–Hochberg-adjusted hypergeometric test. d, Boxplots showing the 
expression of given signatures in different TIMELASER subtypes. Signature 
scores of TIMELASER subtypes with overhead asterisk are significantly higher 
than that of subtypes with corresponding asterisk colour. Wilcoxon rank-sum test,  

two-sided. (TIME-IA, n = 18 cases, TIME-ISM, n = 8 cases, TIME-ISS, n = 12 cases, 
TIME-IE, n = 42 cases, TIME-IR, n = 31 cases, n denotes biologically independent 
patients). For boxplots, centre line shows median, box limits indicate upper 
and lower quartiles, and whiskers extend 1.5 times the interquartile range, 
while data beyond the end of the whiskers are outlying points that are plotted 
individually. e, Overall survival (OS) with each patient assigned to a single CM. 
Log-rank test. f, OS of cases stratified by each TIMELASER module. Log-rank 
test. In b and d, *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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Extended Data Fig. 4 | Validation of five TIMELASER subtypes. a, Boxplots 
showing the percentage of TIMELASER modules across 3 PLC subtypes. (HCC, 
n = 79 cases, ICC, n = 25 cases, CHC, n = 7 cases). b, Heatmap showing the 
percentage of CM1–5 across tumours in our cohort and three published scRNA-
seq cohorts. c, Expression of signature genes for the five TIMELASER subtypes 
in 453 published liver cancer bulk RNA-seq data. d, Boxplot showing z-scores of 
signature genes for five TIMELASER subtypes in different cancer types. 
Colours represents HCC (orange, n = 369 cases), ICC (green, n = 33 cases) and 
CHC (purple, n = 51 cases). e, Pie charts showing the proportion of TIMELASER 
subtypes in c. f, Representative CODEX results showing four different 

TIMELASER subtypes. For each sample, only six representative antibodies 
staining are displayed in the figure along with DAPI. Scale bar, 500 μm.  
g, Validation of TIMELASER by a published spatial transcriptomic study of liver 
cancer. H&E staining and the corresponding spatial feature plots of different 
marker genes of cell types are shown in different samples. In a and d, n denotes 
biologically independent samples. Two-sided Wilcoxon rank-sum test is used. 
For boxplots, centre line shows median, box limits indicate upper and lower 
quartiles, and whiskers extend 1.5 times the interquartile range, while data 
beyond the end of the whiskers are outlying points that are plotted individually. 
**, P < 0.01; ***, P < 0.001.



Extended Data Fig. 5 | L-R networks and feature summary of five 
TIMELASER subtypes. a, Heatmap showing Ro/e enrichment values of 
TIMELASER-specific L-R pairs. b, Chord diagrams showing the interactions 
within each TIMELASER subtype mediated by specific L-R pairs. Line width is 
proportional to interaction intensity and coloured by TIMELASER subtypes.  
c, Barplots showing the number of ligand-receptor pairs significantly enriched 
in TIME-IA and TIME-ISM modules. d, Heatmap showing the expression of 

chemokines and the corresponding receptors in TIME-IA and TIME-ISM 
patients. Exp, normalized mean expression. e, Summary of key features across 
TIMELASER subtypes. f, Schematic for five TIMELASER subtypes. Selected  
cell populations are shown for each TIMELASER subtype with tumour cells  
as background. Tex, exhausted T cell; NK, nature killer cell; TAN, tumour- 
associated neutrophil; TAM, tumour-associated macrophage; DC, dendritic 
cell.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Mutational landscape and GMs of malignant cells.  
a, Heatmap showing frequencies of five TIMELASER subtypes across 111 PLC 
patient samples. Detailed clinical and molecular attributes of individual 
tumour samples are annotated. P values to the right indicate significant non-
random distributions for each attribute. Chi-square test is used for categorical 
variables. Two-way ANOVA test is used for continuous variables. b, Stacked 
barplots showing the distribution of cancer types, virus and cirrhosis state 
across TIMELASER subtypes. Chi-square test. c, Boxplots showing the 
distribution of tumour purity, CNA and TMB inferred by WES data across 
TIMELASER subtypes. Two-way ANOVA test is used for comparison of multiple 
groups. Two-sided Wilcoxon rank-sum test is used for comparison between any 
two groups. d, Heatmap showing the mutational rate of somatic mutations 
enriched in different TIMELASER subtypes. e, Barplots showing mutational 
frequencies of TP53, KRAS, IDH1, and CTNNB1 in different TIMELASER subtypes. 
Colours represent different TIMELASER subtypes. One-sided Fisher’s exact test.  

Tests are performed between the denoted TIME subtype (P value colour coded) 
and a combination of all others. f, Heatmaps showing the eight common gene 
modules (GMs) extracted from tumour cells. g, Boxplots showing the 
distributions of signature scores of GMs across tumours stratified into five 
TIMELASER subtypes. Overhead asterisk is significantly higher than that of 
subtypes with corresponding asterisk colour. Wilcoxon rank-sum test, two-
sided. In c and e, (TIME-IA, n = 13 cases, TIME-ISM, n = 7 cases, TIME-ISS, n = 7 
cases, TIME-IE, n = 32 cases, TIME-IR, n = 20 cases). In g, (TIME-IA, n = 18 cases, 
TIME-ISM, n = 8 cases, TIME-ISS, n = 12 cases, TIME-IE, n = 42 cases, TIME-IR, 
n = 31 cases). In c, e, and g, n denotes biologically independent patients.  
For boxplots, centre line shows median, box limits indicate upper and lower 
quartiles, and whiskers extend 1.5 times the interquartile range, while data 
beyond the end of the whiskers are outlying points that are plotted individually. 
*, P < 0.05; **, P < 0.01; ***, P < 0.001.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Neutrophil heterogeneity in human PLC. a, H&E and 
IHC plots showing the neutrophil frequencies in HCC and ICC patients. Scale 
bar, 20 μm. Boxplot to the right is the quantitative result. Student’s t-test, two 
sided. (HCC, n = 5 cases, ICC, n = 8 cases, n denotes biologically independent 
samples.) In the boxplot, centre line shows median, box limits indicate upper 
and lower quartiles, and whiskers extend 1.5 times the interquartile range, 
while data beyond the end of the whiskers are outlying points that are plotted 
individually. b, Dot heatmap showing the row-scaled expression of marker 
genes for neutrophil clusters. c, UMAP plots showing the expression of typical 
marker genes for neutrophil subsets. Exp, normalized expression.  
d, Distribution of neutrophil clusters by patient. e, Monocle trajectories  

of neutrophils coloured by tissues (left), cluster identities (middle) and 
CytoTRACE scores (right). Each dot represents a single cell. Cell orders are 
inferred based on the expression of the most variable genes across neutrophil 
clusters. f, Heatmap showing similarity scores of peripheral blood neutrophil 
clusters from Xie et al. and lung cancer neutrophil clusters from Zillionis et al. 
compared with liver cancer neutrophil clusters inferred by singleR. g, OS and 
PFS of patients stratified by the proportion of all neutrophils and neutrophil 
clusters (Neu_09/10/11) in TIME-ISM. Log-rank test. h, Average expression of 
classic neutrophil scores and TAN-specific gene scores in neutrophil clusters.  
i, Gene ontology analysis showing the enrichment of specific pathways in 
neutrophil clusters. Benjamini–Hochberg-adjusted hypergeometric test.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Transcription factors, mIHC and in vitro validation 
of neutrophil clusters. a, UMAP plots showing regulon activities of five 
representative transcription factors for specific neutrophil clusters. Binding 
motifs of these transcription factors are shown on the top. b, Normalized ATAC-
seq sequencing tracks of selected transcription factor loci in matched PBN, 
ALN, and TAN isolated from the same patient. ATAC peaks detected by MACS3 
are denoted with the grey box above the gene body and highlighted with light 
red shading. c, Workflow of co-culture experiments of PBNs with or without 
cell line (liver cancer cell line HepG2, HCCLM3, and MHCC97H, control cell line 
HEK293T). d, Survival curve of PBN in culture condition (n = 3, n denotes 
biologically independent samples). Data are presented as mean values ± SEM. 
e, Expression of TAN-related signatures in PBNs co-cultured with or without 
different cell lines for 0 h, 18 h, 24 h, and 30 h. f, Expression of gene signatures 

of different neutrophil subsets in PBNs co-cultured with or without different 
cell lines. g, White arrows mark CCL4+CD66b+ neutrophils, with one cell 
highlighted by the four enlarged panels on the right. Middle panels show another 
representative CCL4+ CD66b+ neutrophil while right panels show a represen 
tative CCL4− CD66b+ neutrophil. Scale bars are 20 μm and 2 μm. h, Expression  
of selected genes in PBNs co-cultured with or without different cell lines for  
0 h, 18 h, 24 h, and 30 h. i, Chord diagrams showing interactions between 
neutrophils and other cell types mediated by CCL3-CCR1 and CCL4-CCR5.  
Line width is proportional to interaction intensity, coloured by cell types with 
receptors. j, Crystal violet staining of migrated monocytes co-cultured with 
matched TAN or non-TAN. Scale bar, 100 μm. k, FACS analysis showing the 
PD-L1 expression of PBNs co-cultured with or without different cell lines for 24 h.  
Two-way ANOVA test is used for e and h.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Co-culture experiment of cell line-PBN-CD8+ T cells 
and analyses of two IFIT+ neutrophil subsets. a, Experimental workflow.  
b, Gating strategy separating neutrophils from CD8+ T cells in the bottom 
chamber of co-culture system in a. c, FACS analysis showing the expression of 
CD25 (n = 3), CD69 (n = 3), and IFNγ (n = 4) in PBNs co-cultured with different 
cell lines. Student’s t-test, one-sided. Data are presented as mean values ± SEM. 
d, FACS analysis showing the expression of IFNγ in CD8+ T cells when anti-PD-L1 
or the IgG control is added to the co-culture system. e, FACS analysis showing 
the expression of CD25, IFNγ, GZMB, and PRF1 in CD8+ T cells co-cultured with 
matched TAN or non-TAN isolated from patients with liver cancer. f, Volcano 
plot showing differentially expressed genes between Neu_03_ISG15 and 
Neu_09_IFIT1. Benjamini-Hochberg adjusted Wilcoxon rank-sum test, two-
sided. g, Heatmap showing the predicted ligand activity by NicheNet on genes 

highly expressed in Neu_09_IFIT1. Pearson correlation indicates the ability of 
each ligand to predict the target genes, and better predictive ligands are thus 
ranked higher. h, Dot heatmap showing the selected ligand-receptor pairs 
between different cell populations and Neu_09_IFIT1. Benjamini-Hochberg 
adjusted permutation test. i, Boxplots showing the proportion of two IFNG+ 
populations between patients with or without Neu_09_IFIT1. Wilcoxon rank-
sum test, two-sided. (Yes, n = 33 cases, No, n = 78 cases). For boxplots, centre 
line shows median, box limits indicate upper and lower quartiles, and whiskers 
extend 1.5 times the interquartile range, while data beyond the end of the 
whiskers are outlying points that are plotted individually. j, Pearson correlation 
between the expression of CD274 and IFNG in TIME cells in this study (left) or in 
the collected bulk RNA-seq datasets (right). In c and i, n denotes biologically 
independent samples.
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | scRNA-seq and functional analyses of mouse models. 
a, Schematic of liver cancer mouse models. Intrahepatic delivery  
of the transposable vectors pTMC (encoding Myc and ∆90Ctnnb1) or  
pTMK (encoding Myc and KrasG12D) via HDTV in Alb-Cre × Trp53 fl/fl mice.  
b, Representative photos, H&E, and IHC staining of HCC and ICC mouse models. 
Rulers in the photo show a minimum unit of mm. Scale bar on the staining slides 
is 20 μm. c, Survival curve of liver cancer mouse model. Log-rank test. d, UMAP 
plot showing major cell types of mice with liver cancer. Dots represent individual 
cells, and colours represent the major cell populations. mILC: innate lymphoid 
cells, mNeu: neutrophils, mMph: macrophages, mMono: monocytes, mEC: 
endothelial cells; mFb: fibroblasts, mEpithelial: hepatocytes, biliary cells and 
progenitors; the first letter m indicates mouse clusters. The two small UMAP 
plots show the distribution of mouse models (left) and tissue types (right).  
e, UMAP plot showing myeloid clusters including 5 DC, 2 monocyte and 7 
macrophage clusters for liver cancer mouse models. f, Dot heatmap showing the 
row-scaled expression of typical marker genes for neutrophil clusters in mice. g, 
Stacked barplot showing the fraction of 12 mouse neutrophil subsets across PB, 
AL, and tumour. h, The trajectory path of mouse neutrophil clusters inferred by 
Monocle2. Each dot represents a single cell. Cell orders are inferred from the 

expression of the most variable genes. The trajectory direction is determined by 
biological prior. i, Heatmap showing Pearson’s correlations across neutrophil 
clusters in human and mouse. j, UMAP plots showing the integration of mouse 
and human neutrophil clusters. k, Sankey plot showing the similarities of the 
joint clusters, mouse tissue isolated neutrophil clusters, and human sample 
isolated neutrophil clusters. l, FACS analysis on neutrophil, macrophage, and 
CD8+ T cell populations in isotype and anti-Ly6G groups. The right barplot shows 
the decreased neutrophil number in anti-Ly6G group (n = 10). m, FACS analyses 
and coloured histogram showing reduced PD-L1 expression in TANs and 
reduced PD-1 and TIM3 expression in tumour-infiltrated CD8+ T cells of the anti-
Ly6G group compared with isotype control. The left barplot shows the 
decreased PD-L1 expression of neutrophils in anti-Ly6G group (n = 8). n, IHC of 
CD68 in tumour regions of mice treated with isotype control or anti-Ly6G 
antibody (n = 6). o, FACS analysis showing the expression of surface and 
intracellular Ly6G in the isotype control and anti-Ly6G treatment groups. p, Bar 
plot showing the statistical analysis of FACS results (n = 3). In l-p, n denotes 
biologically independent samples, data are presented as mean values ± SEM, and 
two-sided Student’s t-test is used.
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