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SUMMARY
Inter- and intra-tumor heterogeneity is a major hurdle in primary liver cancer (PLC) precision therapy. Here,
we establish a PLC biobank, consisting of 399 tumor organoids derived from 144 patients, which recapitu-
lates histopathology and genomic landscape of parental tumors, and is reliable for drug sensitivity screening,
as evidenced by both in vivo models and patient response. Integrative analysis dissects PLC heterogeneity,
regarding genomic/transcriptomic characteristics and sensitivity to seven clinically relevant drugs, as well as
clinical associations. Pharmacogenomic analysis identifies and validates multi-gene expression signatures
predicting drug response for better patient stratification. Furthermore, we reveal c-Jun as a major mediator
of lenvatinib resistance through JNK and b-catenin signaling. A compound (PKUF-01) comprisingmoieties of
lenvatinib and veratramine (c-Jun inhibitor) is synthesized and screened, exhibiting a marked synergistic ef-
fect. Together, our study characterizes the landscape of PLC heterogeneity, develops predictive biomarker
panels, and identifies a lenvatinib-resistant mechanism for combination therapy.
INTRODUCTION

Primary liver cancer (PLC) is the third leading cause of cancer-

related deaths worldwide,1 which comprises hepatocellular

carcinoma (HCC), intra-hepatic cholangiocarcinoma (ICC),

and a type of combined hepatocellular-cholangiocarcinoma

(CHC).2–4 Patients are often diagnosed with PLC at advanced

stages when systemic therapies are needed,5 including sorafe-

nib or lenvatinib in the first line,6 and regorafenib7 or apatinib8 in

the second line. However, these multi-kinase inhibitors only

provide minor improvement of overall survival and a marginal

increase in quality of life, representing an urgent challenge for

patient selection.9
Cancer Cell 42, 535–551,
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Inter- and intra-tumor heterogeneity (ITH) has been indicated

as a major obstacle to effective cancer treatment.10 Previous

studies revealed a substantial level of genomic heterogeneity

in HCC,11,12 ICC,13,14 and CHC,15 reflecting a diverse collection

of cells harboring distinct molecular signatures, with implications

in determining drug sensitivity and contribution to treatment

failure.16–18

Patient-derived organoid (PDO) culturing has been demon-

strated as a powerful instrument to recapitulate tumor hetero-

geneity and investigate drug sensitivity in different cancer

types,19–22 including for disease modeling and drug screening

in PLC.23–28 Nevertheless, previous efforts with PLC organoids

were limited by the number of included samples and a paucity
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Figure 1. A biobank of multi-region organoids recapitulated histological, genomic, and transcriptomic features of liver cancer

(A) A schematic summary of the study. Multi-region samples were obtained from tumors undergoing surgery resection (clinical information detailed in Table S1)

and processed for organoid culturing and genomic analyses subsequently. By applying WES, RNA-seq, and drug screening, we characterized the landscape of

PLC heterogeneity, developed predictive biomarkers, and revealed a lenvatinib-resistant mechanism for combinatory therapy by a compound comprising

moieties of lenvatinib and veratramine (c-Jun inhibitor).

(legend continued on next page)
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of multi-region samples to interrogate genomic and functional

ITH simultaneously. Therefore, development of a large-scale

living biobank of PLC organoids with multiple-region sampling

would allow an extensive characterization of tumor heterogene-

ity, development of predictive biomarkers for patient stratifica-

tion, and revealing mechanisms underlying drug resistance for

identifying novel treatment opportunities.

Here, we established a living biobank of 399 tumor organoids,

derived from spatially distinct regions of surgical specimens

from 144 patients with liver cancer. Utilizing this living biobank,

we dissected genomic and phenotypic heterogeneity, screened

clinically relevant agents with patient response compared, iden-

tified predictive molecular biomarkers, and revealed lenvatinib

resistance mechanism guiding the development of a compound

(linking lenvatinib and a c-Jun inhibitor) with amarked synergistic

effect.

RESULTS

A biobank of multi-regional organoids recapitulated
histological, genomic, and transcriptomic features of
liver cancer
We established a living biobank of liver cancer PDOs utilizing a

multi-regional sampling strategy that represented spatially

distinct regions from the resected specimens of 144 patients

with liver cancer (Figure 1A). Briefly, we collected 1–5 regions

from each tissue sample (Figure 1B), including 522 regions

from primary tumors, six regions from liver metastases, and

30 regions from adjacent liver (AL) tissue. In total, 399 tumor or-

ganoids (75.6% overall establishment rate) and 12 normal or-

ganoids were successfully established, from 142 patients

with primary tumors (123 HCC, 18 ICC, and 1 CHC patients)

and two patients with liver metastases (Table S1). Sample

acquisition time, the proportion of viable cells, and methods

of digestion were identified as important factors impacting

establishment rate (See STAR methods). Further, tumor orga-

noids (n = 376, Data S1.1) derived by multiple-region sampling

were screened with seven agents approved for therapeutic

intervention in liver cancer. Based on H&E staining, we

observed the similar histopathology between organoids and

parental tissue (Figure 1C), and the derived organoids pre-

sented a diversity of morphologies, ranging from solid/

compact structures (HCC and CHC) to more irregularly shaped

cyst-like structures (ICC) (Data S1.2). Pathological marker

analysis demonstrated that multi-regional organoids precisely

display HCC markers (HepPar1/AFP) and ICC markers
(B) Histogram summarizing the number of regions sampled from 144 patients, wi

patients with liver metastasis (LM), respectively.

(C) Pie charts illustrating the histological subtypes of all 399 organoids shown in

(D) H&E and IHC staining of three tumor regions from an HCC patient P1, and H&E

markers (AFP and HepPar1) and biliary markers (EPCAM and KRT19) were assa

(E) Concordance of cancer-related somatic genomic variants between tumor tis

parison of copy number alterations (CNAs) between tumor tissue and organoids

separately.

(G) Heatmap comparing mutation VAFs of COSMIC cancer genes between tum

frequency.

(H) Heatmap showing correlation between tumor tissue and paired organoids

patients were organized by histology subtype. Rows represent organoids and c

Tables S1-S4.
(KRT19/EPCAM) as parental tumor tissue for both HCC (Fig-

ures 1D and Data S1.3A) and ICC (Data S1.3B) patients, while

CHC organoids showed positive signals for both HCC marker

(AFP) and ICC marker (EPCAM) (Data S1.3C). Subcutaneous

xenografts by PDOs implanted in immunodeficient mice also

recapitulated parental tumor histopathology (Data S1.4). Addi-

tionally, organoids derived from AL tissue appeared different

from PLC organoids with a decreased nucleoplasmic ratio

(Data S1.5), and some AL organoids grew as a single-layered

epithelium of ductal-like cells surrounding a central lumen, as

observed previously.23

To assess whether the developed organoid biobank recapitu-

lated the inter- and intra-tumor heterogeneity of PLC tissue, we

performed whole-exome sequencing and RNA sequencing

(RNA-seq) for 99 pairs of derived organoids (randomly selected

from the first 200 established organoids) and parental tumor tis-

sue (88 HCC and 11 ICC) from 36 patients (32 patients withmulti-

regions sampled). Additional 156 PDOs were profiled by RNA-

seq to have a total of 255 PDOs with both transcriptome and

drug screening profiles (Figure 1A), for developing predictive

biomarkers. First, we found a comparable mutation load be-

tween tumor tissue (median 2.43 Mutation/MB) and organoids

(2.37 Mutation/MB). Consistent with previous genomic study

using PLC tissue,15 recurrently mutated genes, including TP53

(43%),AXIN1 (11%), andCTNNB1 (9%), were identified in the or-

ganoid biobank (Figure S1A). Second, a median concordance of

87.5%cancer-relatedmutations (See STARmethods) was found

between tumor tissue and organoids (Figure 1E). Although most

samples showed a high or even full concordance, we noticed

less concordance in few samples (from P5, P15, P25, and

P26), implying potential tumor evolution during passaging of

these organoids, as evidenced in a previous study.19 Thus, we

made a further comparison between early and late passages of

15 organoid lines, and found that the majority of mutations re-

tained in both passages (themedian concordancewith tumor tis-

sue: 80% for early passage and 75% for late passage), although

a small subset of mutations was either lost or gained during serial

passaging (Figures S1B and S1C). Third, both mutational spec-

trums (Figure S1D) and significant copy number alteration (CNA)

peaks (e.g., 12q12, 17p13.3, and 22q11.23, Figure 1F) were

highly similar between parental tumor and derived organoids.

Last, most clonal and subclonal mutations of liver cancer-related

genes were reserved in the PDOs (Figure 1G), such as clonal

TP53mutations in P13, P20, and P23, and subclonal HIF1Amu-

tations in P23, indicating clonal architecture could be retained in

organoids.20
th colors indicating the histological subtypes of 142 patients with PLC and two

Data S1.2 and Data S1.7, with numbers indicated in the brackets.

, IHC, and immunofluorescence staining of the corresponding organoids. HCC

yed by IHC and immunofluorescence staining. Scale bars indicate 50 mm.

sue and organoids. Median concordance is indicated. (F) Genome-wide com-

. Copy number gain (upper panel) and loss (bottom panel) peaks were plotted

or tissue and PDOs for three representative HCC patients. VAF, variant allele

transcriptome. Samples from a same patient were grouped together, and

olumns represent tissues. AL, adjacent liver. See also Figure S1, Data S1 and

Cancer Cell 42, 535–551, April 8, 2024 537



Figure 2. Analysis of multi-regional organoids characterized the genomic ITH and associated functional implications

(A) Genomic landscape of 95 PLC organoids derived from 32 patients with multi-region sampling. Top panel shows the burden of somatic non-silent mutations,

histology, hepatitis status, cirrhosis, and stage information. Middle panel details somatic simple mutations in liver cancer-related genes with rightmost bars

representing mutation frequency in HCC and ICC. Bottom panel shows genes with CNAs.

(legend continued on next page)
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Further expression analysis identified a high level of correla-

tions between paired tumor and organoids at transcriptome

level (n = 99 pairs) (Figure 1H) using a published strategy,23

and similar expression correlations with tumor tissue were

also shown in both early and late organoid cultures (Figure S1E).

By analyzing RNA-seq profiles of the panel of PLC marker

genes,23 a high expression of HCC markers (AFP, GPC3) and

hepatocyte markers (ALB, TTR, APOA1, APOE) was found in

HCC organoids and parental tumor tissue (Figure S1F), whereas

cholangiocarcinoma markers (KRT19, EPCAM, S100A11) were

highly expressed in ICC organoids and tissues. Furthermore,

subtyping results of HCC PDOs using a published HCC tran-

scriptomic classification29 showed a significant consistence

(93.75%) with the subtyping results using HCC tissue (p =

6.1e-21) (Figure S1G).

Together, our comprehensive comparative analyses demon-

strated that the derived PLCPDOs retained the histopathological

characteristics and genomic and transcriptomic features of

parental tissues, which would be versatile for investigating PLC

inter- and intra-tumor heterogeneity.

Analysis of multi-regional organoids characterized
genomic ITH of liver cancer with functional implications
We investigated genomic ITH of 32 PLC patients with estab-

lished and sequenced multi-regional PDOs (Figure 2A), with a

substantial level of genomic ITH identified. First, a sub-group

of patients, including P1, P4, P6, and P23, showed clear variation

in tumormutation burden (TMB) amongmultiple-region samples.

Next, multiple PLC cancer-related geneswere found to have het-

erogeneous somatic mutations and/or CNAs across regions

sampled from a same tumor. For example, two regions of P1

(P1C1 and P1C2) harbored oncogenic TP53 and AXIN1 muta-

tions, whereas undetected in the third region (P1C3). Meanwhile,

P1C3 had a unique oncogenic APOBmutation and an additional

RB1 deletion (Figure 2A). Additionally, APOBmutation was iden-

tified in only single region for another four patients including P9,

P19, P22, and P23. Deletion of chromosomal regions containing

tumor suppressor genes, including 16p13.3 (AXIN1), 12q14.2

(RB1), and 10q23.2 (PTEN), was also found to be heterogeneous

in a subset of patients.

To systematically characterize genomic ITH, we constructed

phylogenetic trees for individual patient, by applying maximum-

parsimony algorithm based on identified somatic point mutations

(Figures 2B and S2A). A number of frequent trunk events in PLC

were identified, including mutations in TP53, RB1, AXIN1, and

CCND1, which were consistent with a previous study.30 Based

on the trunk ratio, i.e., the ratio of ubiquitous mutations to non-
(B) Phylogenetic trees of two representative patients with potential driver events

(C) Scatterplot depicting the trunk ratio (TR) of mutations for each of 32 patients

dominant (TR % 1).

(D) Scatterplot showing positive correlation between mutation-ITH and CNA-ITH

(E) Kaplan-Meier survival curves illustrating the association of mutation-ITH (left)

two-sided log rank test.

(F) Average expression of known sorafenib and lenvatinib targets in organoid cult

connectsmultiple organoids from the same tumor. Log2 (TPM+1) was referred as d

as the control (See STAR methods). ANOVA was used to test the statistical signifi

(G) Dose-response curves of sorafenib and lenvatinib for organoid cultures from

treated organoids as control. Error bars represent means ± SD from at least trip

and S5.
ubiquitous mutations, phylogenetic trees of 12 patients were

regarded as trunk dominant (trunk ratio >1), while the other 20 pa-

tients as branch dominant (Figure S2A). Decreased trunk ratio ap-

peared to be associated with higher ITH (Figure 2C). Moreover,

there was a positive correlation shown between mutation-ITH

and CNA-ITH (Figures 2D and S2B), and both mutation-ITH and

CNA-ITH levels showed significant associations with patient

outcome in our cohort (Figure 2E). PLC patients with a higher level

of mutation/CNA-ITH had worse overall survival (both p < 0.05). In

addition, tumors with hepatitis B virus infection (based on patho-

logical assessment) presented significantly lower levels of ITH

(Figure S2C).

Next, we speculated that genomic and associated transcrip-

tomic heterogeneities might result in heterogeneity in drug sen-

sitivities. Expression of target genes for PLC first-line agents sor-

afenib and lenvatinib was investigated with 255 PDOs from 79

patients. Notably, some patients, e.g., P6 and P32, showed sub-

stantially variable expression of target genes in organoids

derived from diverse regions (Figures 2F and S2D), indicating a

possible intra-tumor heterogeneity in drug response. For confir-

mation, we treated multiple organoid cultures from patients P6

and P32 with these two agents and found that the regions with

a reduced level of target gene expressions showed an increased

drug resistance (Figures 2F and 2G).

Overall, we revealed an extensive level of genomic ITH in PLC,

which showed a prognostic association and might lead to het-

erogeneous response to drug treatment.

Screening of clinically relevant agents predicted patient
response and revealed intra-tumor heterogeneity in
drug sensitivity
We performed screening of 7 PLC-relevant agents in 376 organo-

ids derived from 116 patients (Figure 3A), which included the

first-line agents lenvatinib and sorafenib,6 the second-line agents

regorafenib7 and apatinib,8 anti-VEGFR antibody bevacizumab,31

as well as agents targeting ICC with actionable mutations,

including pemigatinib (targeting cholangiocarcinoma harboring

FGFR2 fusions/rearrangements)32 and ivosidenib (targeting

IDH1-mutant, chemotherapy-refractory cholangiocarcinoma).33

Two common summary statistics, half-maximal inhibitory con-

centration (IC50) (Figure 3B) and normalized area under the

curve (AUC) (Figure 3C) were calculated, and a strong correlation

was observed between the IC50 and AUC values for each of the

7 screened drugs (Spearman r > 0.79) (Figure 3D). We regarded

the maximum IC50 (or AUC) value among all regions from a pa-

tient as the patient-level IC50 (or AUC) value, based on the

assumption that a patient’s response to a drug treatment was
indicated. See Figure S2 for the phylogenetic trees of additional patients.

, in which 12 patients are trunk dominant (TR > 1) and 20 patients are branch

levels.

and CNA-ITH (right) with overall survival, respectively. p value determined by

ures derived from patients P6 (5 organoids) and P32 (3 organoids). Dotted line

rug target expression, while expression level of housekeeping geneswas used

cance for difference of target expression between multiple regions of a tumor.

patients P6 and P32. Data represent relative cell viability values, with DMSO-

licate experiments. **p < 0.01; ****p < 0.0001. See also Figure S2, Tables S2
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determined by the most resistant region. All patients were

ranked by patient-level AUC and dichotomized into sensitive

and resistant groups for each drug, respectively, using the

percentile cutoff according to the reported clinical overall

response rate (See STAR methods, Figure 3E). By testing drug

sensitivity in the early and late organoids passages of 16 organo-

ids, we found that most organoids (12/16) showed nearly iden-

tical sensitivity to lenvatinib treatment between the early and

late passages, while differenceswere observed in four organoids

P61C3, P75C2, P76C2, and P133 (Figure S3A). Based on the

AUC cutoffs, these four PDOs were non-sensitive to lenvatinib

at early passage and became even more resistant at late pas-

sage. We speculated that these four organoids consisted of

non-homogenous population with expansion of resistant popu-

lation during passaging.

Next, we compared the organoids-based drug sensitivity re-

sults with the corresponding clinical response, based on inves-

tigations of 14 patients who were relapsed during the study

period and had treatment with at least one of studied drugs,

including lenvatinib (n = 8), sorafenib (n = 4), and apatinib

(n = 6) (Figure 3F). In eight patients with lenvatinib treatment,

two patients (P51 and P112) underwent complete response

(CR), with organoids derived from all three regions showing

sensitivity, while the other six patients underwent progressive

disease, with organoid(s) derived from at least one region being

resistant to lenvatinib. Therefore, clinic response appeared to

support the lenvatinib sensitivity results using organoids (p =

0.036) (Figure 3F). Similar comparisons with sorafenib and apa-

tinib also confirmed the prediction value of our organoid drug

screening (Figure 3F).

Furthermore, 4 out of 14 patients experienced therapeutic

regimen change after assessing the response based onmRECIST

criteriaduring the studyperiod. For example, patient P51wasnon-

responsive to sorafenib and transcatheter arterial chemoemboli-

zation treatment, but later underwent CR to lenvatinib for a total

of five months (Figure 3G). In line with the clinical responses, all

three organoids from P51 were found to be resistant to sorafenib

but sensitive to lenvatinib. Another example was patient P15,

whoshowednoclinical response tomonotherapy treatmentof len-

vatinib, apatinib, and bevacizumab sequentially (Figure S3B).

Accordingly, all three organoids from P15 showed resistance to
Figure 3. A large-scale drug screening using the living biobank and ag

(A) Dose-response curves of seven targeted drugs (sorafenib, lenvatinib, regoraf

organoids (from 116 patients). Data represent relative cell viability values, with DM

least triplicate experiments.

(B) Scatterplots showing IC50 distribution of seven targeted drugs in 376 organo

(C) Violin plots showing normalized AUCs of seven targeted drugs in 376 organo

(D) Scatterplots indicating significant positive correlation between AUC and IC50

(E) Violin plots illustrating normalized AUCs of seven targeted drugs in 116 patien

Dashed line represents the cutoff used to define the sensitive group for each dru

(F) For relapsed patients with treatment of lenvatinib/sorafenib/apatinib, individu

organoids, with clinical responses from patients indicated on the right for comp

stable disease.

(G) A schematic diagram illustrating patient journey (top panel) for P51 with indica

multi-region organoids derived from his primary tumor.

(H) Tumor growth curves of organoid-derived xenografts (left panels) originated fr

treatment. Tumors were imaged after the mice were sacrificed (right panels). Data

***, p < 0.001; ns, not significant.

(I) A customized chart indicating the cumulative sensitivity (labeled on the right)

patient level (right panel). See also Figure S3 and Tables S6.
lenvatinib and apatinib, and two organoids were resistant to

bevacizumab.

The results from organoid drug screening were also validated

using organoid-derived xenografts (Figure 3H). Organoids from

patients P15, P51, and P74 were transplanted to immune-defi-

cient mice and treated with lenvatinib, respectively. All the xeno-

grafts derived from drug-sensitive organoids showed inhibitory

effects upon lenvatinib treatment. Taken together, these results

demonstrated the clinical potential of applications of PLC orga-

noids in predicting patient treatment response.

Last, we utilized drug screening results to quantitatively assess

the potential benefits of seven targeted therapy drugs used in cur-

rent clinical practice for PLC patients. A striking difference be-

tween region (organoid) level and patient level was estimated for

both individual and cumulative sensitivity (Figure 3I). Although a

cumulative sum of 72.9% sensitivity could be achieved for all

derived organoids from different regions, only 37.1% patients

may benefit from the monotherapy with any of these agents

considering the most insensitive organoid from a patient, which

may be due to extensive ITH in PLC. Additionally, we screened

50 ICC organoids with gemcitabine and cisplatin, two chemother-

apeutic agents used for patients with advanced biliary tract can-

cer,34 and found a subgroup of ICC organoids insensitive to gem-

citabine (n = 10, 32%) or cisplatin (n = 9, 29%) could benefit from

lenvatinib (Figure S3C), respectively. Thus, it requires precise ap-

proaches to stratify PLC patients for targeted therapy treatment.

Molecular analysis identified expression signatures
predicting sensitivities to lenvatinib and three
other drugs
As genomic heterogeneity has been recognized as amajor factor

contributing to drug resistance,35 we first investigated the asso-

ciation of genomic heterogeneity with PLC drug sensitivities

using our multi-regional PDOs. Significantly elevated levels of

mutation ITH and CNA-ITH were both identified in the lenvati-

nib-resistant group of patients than the sensitive group (Fig-

ure 4A), indicating a role of ITH in resistance of lenvatinib treat-

ment. We also investigated the associations of genomic ITH

with sorafenib, regorafenib, and apatinib sensitivities (Figures

S4A–S4C), respectively, and found an increased level of CNA-

ITH in the apatinib-resistant group of patients. However, it is
reements with patient responses

enib, apatinib, bevacizumab, pemigatinib, and ivosidenib) for all screened 376

SO-treated organoids used as control. Error bars representmeans ± SD from at

ids.

ids.

values for each of seven targeted drugs.

ts (represented by the maximum AUC value among multi-regions of a tumor).

g.

al scatterplot shows AUC values identified by drug screening of the matched

aring the consistency. CR, complete response; PD, progressive disease; SD,

ted treatment after each relapse, and drug sensitivity results (bottom panel) of

om different tumor regions of three patients (P15, P51, and P74) with lenvatinib

are representative of five mice each group. Error bars represent means ± SD.

of seven targeted drugs in the organoid biobank, at PDO level (left panel) and

Cancer Cell 42, 535–551, April 8, 2024 541



Figure 4. Molecular analysis identified expression signatures predicting sensitivity of clinically relevant agents

(A) Boxplots comparing the levels of genomic ITH (left: Mutation-ITH, right: CNA-ITH) between the lenvatinib-sensitive and -resistant groups of organoids. The

box bounds the interquartile range divided by the median, with the whiskers extending to a maximum of 1.5 times the interquartile range beyond the box.

Wilcoxon rank-sum tests, all p values are two sided, *p < 0.05; **p < 0.01.

(B) Scatterplot of protein coding genes with the horizontal axis showing median gene expression, and the vertical axis showing the expression correlations with

drug sensitivity. Dots in black indicate 254 genes significantly associated with lenvatinib sensitivity.

(C) Heatmap showing the normalized expression of these 254 genes, with samples ordered by drug sensitivity, and targets of FDA-approved drugs labeled.

(D) Heatmap showing unsupervised clustering of TCGA-LIHC samples based on expression of these 254 genes.

(E) Bar plot showing expression correlations with drug sensitivity for 13 signature genes (See STAR methods) predicting lenvatinib response.

(legend continued on next page)
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challenging to use genomic ITH levels as predictive biomarkers,

due to a lack of specificity for individual agent.

Thus, we continued to model PLC drug sensitivities using tran-

scriptomic profiles, as gene expression profiles have been suc-

cessfully associated with patient response to drug treatment.36,37

Two sets of organoids developed prospectively with both RNA-

seq and drug screening profiles were used for training (n = 106)

and validation (n = 106), respectively. Using the training set, we

first identified 254 genes with significant associations with lenva-

tinib sensitivity (See STAR methods) (Figure 4B), in which three

genes (JUN, IL1B, and TNFRSF8) are the targets of Food and

Drug Administration (FDA)-approved drugs,38 as indicated in the

expression heatmap (Figure 4C). Using these 254 genes, we clus-

tered 424 HCC patients from the TCGA-LIHC project39 and four

groups of patients were stratified. Notably, a group of patients

showedubiquitously lowexpressionof resistant genes (Figure4D),

with a proportion (24.86%) similar to the reported clinical efficacy

(24.1%) of lenvatinib,6 indicating this group could be enriched of

patient sensitive to lenvatinib treatment.

To identify key genes associated with drug response for

biomarker development, we further applied a machine-learning-

based approach (See STAR methods) and identified a panel of

13 signature genes as the predictive biomarker of lenvatinib

response, including JUN, HIST1H1E, and WNT6A (Figures S4D

and 4E). This multi-gene biomarker achieved 0.86 for area under

receiver operating characteristic (AUROC) curve (Figure 4F), and

showed a similar decent performance in the validation set of orga-

noids (AUROC0.81).Moreover, we applied the sameanalysis pro-

cedure to the other three PLC drugs (sorafenib, regorafenib, and

apatinib), and developed predictive biomarkers for treatment

response of sorafenib (AUROC>0.9 in both training and validation

sets, Figures 4G–4K and S4E), regorafenib (AUROC >0.8 in both,

Figures S4F–S4K), and apatinib (AUROC >0.7 in both, Figures

S4L–S4Q), respectively.

Last, we evaluated the clinical utilities of the developed

biomarker using patients with both treatment of studied PLC

drugs during study period and multi-regional organoid analyses,

in which 6 out of 7 patients with lenvatinib treatment showed

consistent results between signature prediction and clinical

response (Figure 4L), while a full consistency observed for pa-

tients with sorafenib treatment (3/3, Figure 4L) and patients

with apatinib treatment (5/5, Figure S4R).

Taken together, we developed and validated multi-gene

expression signatures predicting response of four antitumor

agents used in PLC clinical practice, warranting future clinical

investigation including biomarker-guided trials.

c-Jun-mediated lenvatinib resistance
Understanding the mechanisms of lenvatinib resistance in PLC

could help development of novel therapeutic options for combi-
(F) ROC curves of the 13-gene lenvatinib predictive signature in the training (n

indicated.

(G–K) are counterparts for (B–F) for the expression signature predicting sorafen

sensitivity and 13 genes were identified as the sorafenib signature genes.

(L) Bar graphs showing lenvatinib signature (left panel) and sorafenib signature (r

region organoids and clinical response from the treatment of individual drug. Bar c

clinical response are indicated at horizontal axis. Signature prediction score were

also Figure S4 and Tables S5 and S6.
nation treatment.40,41 Lenvatinib can block VEGFR and FGFR

signaling, but the mechanism of lenvatinib’s effect on liver can-

cer organoids remains unclear. By analyzing expression levels

of all known lenvatinib-targeted receptors (Figure S5A), we found

that FGFRs are particularly highly expressed in PLC organoids,

as well as in published cancer cell lines (n = 98, from CCLE) for

four cancer types with lenvatinib approved for usage in clinic.

To investigate the functional consequence, we further tested

the effect of FGFR knockdown on lenvatinib sensitivity in lenva-

tinib-sensitive organoids, which were top five high-expression

ones for each FGFR member gene, respectively (Figure S5B).

FGFR1 knockdown in top five FGFR1 high-expression organoids

reduced the sensitivity to lenvatinib treatment in 4 out of 5 orga-

noids (P28C4, P41C2, P16C1, and P41C1). For the remaining

FGFRs, 2/5, 3/5, and 3/5 high-expression organoids showed

reduced sensitivity to lenvatinib treatment upon knocking

down of FGFR2, FGFR3, and FGFR4, respectively. These results

suggest that FGFRs play an important role in lenvatinib-medi-

ated therapeutic effects in PLC organoids.

To identify lenvatinib-resistant genes, we performed protein-

protein interaction (PPI) network analysis (Figure 5A) using genes

significantly associated with lenvatinib sensitivity. Notably, JUN,

a hub protein of this PPI network, is one of 13 signature genes for

lenvatinib response, and the target of an FDA-approved drug.

Gene expression of JUNwas positively correlated with the resis-

tance to lenvatinib treatment as represented by IC50 value (R =

0.36, p = 2.8e-09, Figure 5B). Protein levels of c-Jun, assessed

by immunohistochemical staining, were also significantly higher

in the 216 regions with lenvatinib-resistant organoids than the

160 regions with sensitive organoids (p < 0.001, Figure 5C). In

addition, higher c-Jun expression was found in tumors than

paired para-cancerous tissues in 100 patients (p < 0.001,

Figures 5D and S5C). Together, high level of c-Jun was found

to be implicated in tumorigenesis and lenvatinib resistance

in PLC.

We further investigated the functional insights, using an HCC

patient (P20) and an ICC patient (P94) with organoids derived

from distinct regions showing divergent response to lenvatinib

treatment. An elevated level of c-Jun was shown in the lenvati-

nib-resistant organoids (P20C1, P20C2, and P94C2), compared

to the sensitive organoids (P20C3, P20C4, and P94C1) (Figures

5C and S5D). Next, we knocked down c-Jun in P20C2 and

P94C2 organoids, and found that c-Jun knockdown could sensi-

tize lenvatinib-resistant organoids (Figure 5E). In contrast, over-

expression of c-Jun in P20C3 and P94C1 converted them to be

resistant to lenvatinib treatment (Figure 5F).

To systematically evaluate the role of c-Jun in lenvatinib resis-

tance across a wide spectrum of PLC patients, we further

knocked down c-Jun in 216 lenvatinib-resistant organoids, in

which 63 (29.2%) were converted to be sensitive (Figure 5G).
= 106) and validation (n = 106) sets. Area under ROC curves (AUROCs) are

ib response, in which 776 genes were significantly associated with sorafenib

ight panel) predictions for relapsed patients with both RNA-seq profiled multi-

olors indicate the predicted response by the expression signature, and patient

indicated by the left y axis, while drug sensitivity results by the right y axis. See
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Figure 5. c-Jun was identified as a mediator of lenvatinib resistance

(A) An interaction network consisting of lenvatinib-resistant proteins, with the size of a circle indicating expression correlation with lenvatinib sensitivity, and the

color of a circle indicating gene expression level (darker color for higher expression).

(legend continued on next page)
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Consequently, this would potentially benefit a total of 27 patients

with resistance to lenvatinib treatment (Figure S5E). Notably, 23

out of these 27 patients had a heterogeneous response to lenva-

tinib treatment in their organoids derived from distinct regions,

implying a high level of phenotypic ITH whereas c-Jun inhibition

may help address lenvatinib resistance for these patients. There-

fore, we employed three c-Jun inhibitors (veratramine, SR11302,

and NY2267) and found increased sensitivity to lenvatinib treat-

ment in the previous resistant organoids, with an increase of

17.1%, 17.1%, and 13.4%, respectively (Figure 5H). Further

analysis of the entire organoid biobank suggested that a

maximum of 37.1% patients (59.0% of regions) could be sensi-

tive to combinatorial treatment of lenvatinib and one of three

c-Jun inhibitors (Figure 5I). Together, these results indicated

that high level of c-Jun could contribute to lenvatinib resistance

in PLC.

To reveal the signaling underlying c-Jun-mediated resistance

to lenvatinib, we performed functional enrichment analysis using

245 genes with significant negative associations with lenvatinib

response, and found that Wnt and c-Jun N-terminal kinase

(JNK) signaling pathways were significantly dysregulated (Fig-

ure 5J). Expression of b-catenin (a key Wnt signaling regulator)42

and c-Jun was found to be positively correlated (Spearman r =

0.47) in lenvatinib-resistant organoids (Figure 5K, left). We

continued functional investigation using P20 (HCC) and P94

(ICC) organoids. High levels of c-Jun and b-catenin were both

shown in lenvatinib-resistant organoids (P20C2 and P94C2),

while low levels in the sensitive organoids (P20C3 and P94C1)

(Figure 5K, right). Knockdown of b-catenin in P20C2 and
(B) Scatterplot showing positive correlation between the level of lenvatinib resist

JUN among all 255 organoids with RNA-seq and drug testing profiles.

(C) IHC staining of c-Jun (left panel) in two representative patients P20 (HCC) an

panel), showing a significant increase of c-Jun expression in the regions with len

(D) Histogram representing a significant increase of c-Jun protein level in HCC a

immunoblotting. See Figure S5C for detailed immunoblots.

(E) Dose-response curves of lenvatinib upon c-Jun knockdown (sh c-Jun) in two le

least three independent experiments. Error bars represent means ± SD. ****, p <

(F) Dose-response curves of lenvatinib upon c-Jun overexpression (Flag-c-Jun) in

of at least three independent experiments. Error bars represent means ± SD. ***

(G) Scatterplot showing IC50 change of lenvatinib upon c-Jun knockdown in 216

(H) Scatterplot showing IC50 change of lenvatinib when treated in combination

resistant organoids. ****, p < 0.0001.

(I) A customized chart showing the cumulative sensitivity (labeled on the right) o

organoid biobank, at PDO level (upper panel) and patient level (lower panel, repr

(J) Pathways enriched in genes with significant negative associations with lenvatin

length of a bar, while statistical significance of enrichment (BH-adjusted p value

(K) Scatterplot (left panel) showing positive correlation between mRNA levels of

sentative regions (P20C2, P94C2, P20C3, and P94C1).

(L) Western blotting demonstrating a decrease of c-Jun protein expression upon

(M) Dose-response curves of lenvatinib upon b-catenin knockdown (sh b-caten

sentative of at least three independent experiments. Error bars represent means

(N) Scatterplot showing IC50 change of lenvatinib upon b-catenin knockdown in

(O) Dose-response curves of lenvatinib upon overexpression of b-catenin (Flag

sensitive organoids (P20C3 and P94C1). Data are representative of at least three

(P) Scatterplot (left panel) showing positive correlation between mRNA levels of c

regions (P103C2, P10C1, P103C3, and P10C2).

(Q) Dose-response curves of lenvatinib upon JNK knockdown (sh JNK) in two lenv

three independent experiments. Error bars represent means ± SD. ****, p < 0.000

(R) Scatterplot showing IC50 change of lenvatinib upon JNK knockdown in 216

(S) Dose-response curves of lenvatinib upon overexpression of JNK (FLAG-JNK

organoids (P103C3 and P10C2). See also Figure S5.
P94C2 organoids reduced c-Jun protein levels (Figure 5L) and

increased the sensitivity to lenvatinib treatment (Figure 5M).

We further screened all lenvatinib-resistant organoids and found

that 18.5% organoids were converted to be sensitive upon

b-catenin knockdown (Figure 5N). In contrast, overexpression

of wild-type and mutant b-catenin (S33A/S37A/T41A/S45A, mu-

tation of these phospho-acceptor sites stabilizes b-catenin, al-

lowing it to accumulate, translocate to the nucleus, and activate

WNT signaling)43 significantly reduced the sensitivity to lenvati-

nib treatment in both sensitive organoids (Figure 5O). These re-

sults together indicated b-catenin as a key regulator of c-Jun

in lenvatinib-resistant organoids.

However, knockdown of b-catenin only partially accounts for

the sensitized organoids to lenvatinib treatment upon c-Jun

knockdown (18.5% versus 29.2%, Figures 5G and 5N). We

continued investigation with another dysregulated signaling,

JNK. A positive correlation between JNK and c-Jun expression

was also found in lenvatinib-resistant regions (Spearman r =

0.35) (Figure 5P, left panel). As P20 and P94 organoids had low

expression of JNK, we selected P103 and P10 for investigation,

as their multi-regional organoids presented various levels of JNK

expression and showed no benefit from b-catenin knockdown

(Figure S5F). Lenvatinib-resistant organoids P103C2 and P10C1

showed higher levels of JNK compared with the sensitive one

P103C3 and P10C2 (Figure 5P, right panel), and knockdown of

JNK significantly increased the sensitivity to lenvatinib treatment

in both resistant organoids (Figure 5Q). Furthermore, systematic

knockdown of JNK using the organoid biobank significantly

improved the sensitivity to lenvatinib in 28 (13.0%) out of all 216
ance (represented by log2 transformed IC50 values) and mRNA expression of

d P94 (ICC). IHC quantification of c-Jun with all regions of tumor tissue (right

vatinib-resistant organoids than the regions with sensitive organoids.

nd ICC tissue than the paired paracancerous samples (100 pairs), assayed by

nvatinib-resistant organoids (P20C2 and P94C2). Data are representative of at

0.0001.

two lenvatinib-sensitive organoids (P20C3 and P94C1). Data are representative

*, p < 0.0001.

lenvatinib-resistant organoids. ****, p < 0.0001.

with veratramine/SR11302/NY2267 (1:1 ratio), respectively, in 216 lenvatinib-

f lenvatinib and veratramine/SR11302/NY2267 combinational treatment in the

esented by the maximum IC50 value among multi-regional PDOs of a tumor).

ib sensitivity. The number of genes identified in a pathway is proportional to the

) is indicated by bar color.

c-Jun and b-catenin, and IHC staining of two proteins (right panel) in repre-

siRNA-mediated knockdown of b-catenin.

in) in two lenvatinib-resistant organoids (P20C2 and P94C2). Data are repre-

± SD. ****, p < 0.0001.

216 lenvatinib-resistant organoids. p < 0.0001.

-b-catenin) and mutant b-catenin (S33A/S37A/T41A/S45A) in two lenvatinib-

independent experiments. Error bars represent means ± SD. ***, p < 0.001.

-Jun and JNK, and IHC staining of two proteins (right panel) in representative

atinib-resistant organoids (103C2 and 10C1). Data are representative of at least

1.

lenvatinib-resistant organoids. ****, p < 0.0001.

) and constitutive active form of JNK (JNKK2-JNK) in two lenvatinib-sensitive
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lenvatinib-resistant organoids (Figure 5R). In contrast, overex-

pression of wild-type or the constitutive active form of JNK

(JNKK2-JNK)44 in P103C3 and P10C2 organoids significantly

reduced lenvatinib sensitivity (Figure 5S). Further, to explore the

therapeutic potential of JNK inhibition, we investigated three

JNK inhibitors (SP600125, tanzisertib, and JNK-IN-8) in two lenva-

tinib-resistant organoids (P103C2 and P10C1), which all effec-

tively decreased c-Jun phosphorylation levels (Figure S5G), and

sensitized the organoids to lenvatinib treatment (Figure S5H).

Altogether, JNK and Wnt/b-catenin may serve as the up-

stream regulators of c-Jun in mediating lenvatinib resistance.

c-Jun inhibition exhibited a marked synergistic effect
with lenvatinib via compound PKUF-01 on lenvatinib-
resistant organoids
Due to the revealed synergistic effects of lenvatinib and c-Jun in-

hibition, we designed and synthesized six compounds linking

lenvatinib and veratramine (with the best efficacy among three

c-Jun inhibitors) (Figures S6A and S6B), which enables targeting

the same cancer cells simultaneously for better combinatorial

treatment effect. Six compounds were different with the struc-

ture of linker (-(CH2)n- or -S-S-), or the modifications of veratr-

amine in hydrophobic or hydrophilic group. Three lenvatinib-

resistant organoids (P20C2, P74C3, and P94C2) were used for

comparing efficacies of six compounds (Figure S6C). A com-

pound, designated as PKUF-01 (Figures 6A, S6D, and S6E),

can effectively block c-Jun and FGFRs (Figure 6B), and showed

promising inhibitory efficacy (Figure 6C). When PKUF-01

was further assessed with the organoid biobank, a significant

improvement of sensitivity (represented by decrease in IC50

values) was shown in comparison with lenvatinib treatment (Fig-

ure 6D). Especially, for the 216 lenvatinib-resistant organoids

from 90 patients, PKUF-01 induced significant response in

20.0% of these organoids (Figure 6E), which had a marginal in-

crease of 2.9% (20.0% vs. 17.1%) sensitized lenvatinib-resistant

organoids compared with co-treatment of two individual agents

(veratramine and lenvatinib). The efficacy of PKUF-01 was

further examined in organoid-transplant xenograft models. As

shown in Figure 6F, treatment with lenvatinib (10 mg/kg IG,
Figure 6. A compound PKUF-01 increased the sensitivity of lenvatinib

(A) The formula of PKUF-01, linking lenvatinib and veratramine. See Figure S6A

(B) Western blotting showing the total and phosphorylation level of FGFR, JNK, a

P74C3 and P94C2) upon PKUF-01 treatment.

(C) Dose-response curves of lenvatinib, veratramine, and PKUF-01 for three lenva

of at least three independent experiments. Error bars represent means ± SD. ***

(D) Scatterplot showing IC50 distribution of lenvatinib and PKUF-01 in all screen

(E) Scatterplot showing IC50 values of lenvatinib and PKUF-01 in 216 lenvatin

p < 0.0001.

(F) Tumor growth curves (upper panels) of three organoid-derived xenografts (P20

or combination treatment of lenvatinib and veratramine. Tumors were imaged aft

each group. Error bars represent means ± SD. *, p < 0.05; ***, p < 0.001; ns, not s

administration, there was no significant difference shown between PKUF-01 and

(G) Bar plot showing expression correlations with drug sensitivity for 17 signatur

(H) ROC curves of the 17-gene signature predicting PKUF-01 response in the train

indicated.

(I) GSEA enrichment plot showing the selected gene sets significantly changed i

(J) GSEA enrichment plot for a gene set associated with stem cell23 using the sa

(K) A customized chart showing the cumulative sensitivity (labeled on the right) of

level (upper panel) and patient level (lower panel).

(L) The proposed model of c-Jun-mediated lenvatinib resistance. See also Figur
QD) or veratramine (10 mg/kg IG, QD) failed to inhibit the tumor

growth in three organoid-derived xenograft models (P20C2,

P74C3, and P94C2). In contrast, treatment with PKUF-01

(10 mg/kg IG, QD) significantly inhibited tumor growth.

Moreover, we applied the aforementioned machine-learning-

based approach and developed a multi-gene signature for pre-

dicting PKUF-01 response. At first, expressions of 205 genes

were found with significant associations with PKUF-01 sensi-

tivity, and tumors from TCGA-LIHC dataset could be stratified

into four groups using these 205 genes (Figures S6F–S6I). A

biomarker consisting of 17 signature genes was then developed,

in which c-Jun was also included (Figure 6G). This signature

achieved an AUROC of 0.836 in the training set and 0.731 in

the validation set (Figure 6H). Additionally, based on GSEA anal-

ysis of transcriptome profiles comparing groups of organoids

with distinct sensitivity to PKUF-01 treatment (Figure 6I), we

found that embryonic organ development-related gene sets

and a gene set associated with stem cell23 (Figure 6J) were up-

regulated in the resistant organoids; therefore, targeting stem-

ness might be a potential strategy to overcome the resistance

to PKUF-01 treatment.

Last, by analyzing the whole PLC organoid biobank, our re-

sults demonstrated that PKUF-01 had a significantly improved

efficacy than lenvatinib treatment alone in PLC (54.0% vs.

42.6%), and could benefit 10.4% more PLC patients (34.5%

vs. 24.1%) (Figure 6K). Together with seven screened agents

used in clinical practice, target therapies could benefit 48.3%

PLC patients in total (Figure 6K).

In summary, lenvatinib could target FGFR and other receptors,

attenuating downstream signaling to inhibit tumor growth; how-

ever, c-Jun, regulated by Wnt/b-catenin and JNK pathways,

contributes to lenvatinib resistance. Targeting c-Jun by PKUF-

01 showed significant efficacy in lenvatinib-resistant organoids

and potentially benefit more PLC patients (Figure 6L).

DISCUSSION

By development of a large-scale PLC living bank consisting of

399 organoids derived from distinct regions of 144 patient
-resistant organoids

for the formulas of all six candidate compounds.

nd c-Jun (veratramine targets) in three lenvatinib-resistant organoids (P20C2,

tinib-resistant organoids (P20C2, P74C3, and P94C2). Data are representative

*, p < 0.0001.

ed 376 organoids.

ib-resistant organoids, with gray lines connecting the same organoids. ****,

C2, P74C3, and P94C2) with lenvatinib/veratramine/PKUF-01 treatment alone,

er the mice were sacrificed (lower panels). Data are representative of five mice

ignificant. However, due to a limited intragastric absorption of PKUF-01 by oral

the combined treatment (lenvatinib and veratramine) for in vivo models.

e genes predicting PKUF-01 response.

ing (n = 106) and validation (n = 106) sets. Area under ROC curves (AUROCs) are

n lenvatinib-resistant organoids that PKUF-01 failed to sensitize.

me group comparison as (H).

seven approved targeted drugs and PKUF-01 in the organoid biobank, at PDO

e S6.
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tumors, we recapitulated a full spectrum of inter- and intra-tu-

mor heterogeneity of liver cancer ex vivo, enabling a compre-

hensive investigation integrating genomic profiles and

functional and clinical phenotypes. PLC patients with high

levels of mutation/CNA ITH were found to be associated

with worse survival, and being more resistant to lenvatinib

treatment. Using machine learning approaches, we modeled

pharmacogenomic interactions of clinically relevant drugs in

PLC and developed robust multi-gene expression signatures

predicting sensitivity to treatment of anti-angiogenic tyrosine

kinase inhibitors (lenvatinib, sorafenib, regorafenib, and apati-

nib), respectively, which were in agreement with clinical

responses from patients, warranting further investigation to

guide clinical decision. Together with Liver Cancer Model Re-

pository,45 a study characterized by the pharmacogenomic

landscape of human liver cell line models, we both identified

the significant association of WNT signaling activity with sor-

afenib response. In addition, within lenvatinib signature genes,

we identified a key role of c-Jun in mediating lenvatinib resis-

tance through JNK and b-catenin signaling, and synthesized a

compound PKUF-01, demonstrating a marked synergistic ef-

fect between veratramine (c-Jun inhibitor) and lenvatinib.

These findings may be linked with a recent study showing

anti-proliferative effects by combination of gefitinib (EGFR

inhibitor) and lenvatinib in HCC, as c-Jun was indicated as

a downstream gene regulated by EGFR signaling,46

which needs further investigation to illustrate the exact

mechanism.

In addition, the combination of immune checkpoint inhibitors

(ICIs) with anti-angiogenic tyrosine kinase inhibitors (TKIs) or

antibodies has been indicated with the capability to drive im-

mune cell infiltration into immune cold tumors through vascular

normalization,47 which promoted the FDA approval for the

regimen of atezolizumab plus bevacizumab in HCC, and

several multi-center phase 3 clinical trials (NCT03713593,

NCT04194775, NCT04770896, NCT04246177, NCT04777851)

with different combinations of ICI and anti-angiogenic TKI.

Our developed predictive signatures for anti-angiogenic TKI

may also aid better stratification to identify patients benefiting

from the combination therapy, with TMB considered simulta-

neously. Further clinical validation could be essentially valu-

able, as the LEAP-002 study (NCT03713593) investigating

the combination of lenvatinib plus pembrolizumab recently

missed its dual primary endpoints in patients with unresectable

HCC.48

Together, our study provides a valuable resource to charac-

terize the influence of genomic heterogeneity on the sensitivity

to different therapeutic agents. The predictive biomarkers for

anti-angiogenic TKIs and the combination treatment option

that we developed warrant future clinical investigation to accel-

erate precision medicine in liver cancer.
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Antibodies

HepPar1 antibody Abcam Cat# ab190706; RRID: AB_3095623

AFP antibody Abcam Cat#ab46799: RRID: AB_867622

KRT19 antibody Abcam Cat#EP1580Y; RRID: AB_1192460

EPCAM antibody Abcam Cat#ab223582; RRID: AB_2762366

c-JUN antibody Abcam Cat#ab40766; RRID: AB_731602

JNK antibody Abcam Cat#ab199380; RRID: AB_3095624

b-catenin antibody Abcam Cat#ab32572; RRID: AB_725966

Ser63 of c-Jun antibody Abcam Cat# ab32385: RRID: AB_726900

Ser73 of c-Jun antibody Abcam Cat# ab30620; RRID: AB_726902

Thr91 of c-Jun antibody Abcam Cat# ab81319; RRID: AB_1640354

Thr93 of c-Jun antibody Abcam Cat# ab79756; RRID: AB_1603343

FGFR1 antibody Abcam Cat# ab76464; RRID: AB_1523613

Y653 of FGFR1 antibody Abcam Cat# ab173305; RRID: AB_3094883

Y654 of FGFR1 antibody Abcam Cat# ab59194; RRID: AB_941585

FGFR2 antibody Abcam Cat# ab109372; RRID: AB_2934131

Y769 of FGFR2 antibody Absin Cat# abs139977

S782 of FGFR2 antibody Absin Cat# abs140266

FGFR3 antibody Abcam Cat# ab133644; RRID: AB_2810262

Y724 of FGFR3 antibody Abcam Cat# ab155960; RRID: AB_3095625

FGFR4 antibody Abcam Cat# ab44971; RRID: AB_732374

Y642 of FGFR4 antibody Abcam Cat# ab192589; RRID: AB_3095628

JNK antibody Abcam Cat#ab199380; RRID: AB_3095624

T183/Y185 of JNK antibody Abcam Cat#ab76572; RRID: AB_1523840

Biological samples

Human liver cancer tissue This study Table S1

Chemicals, peptides and recombinant proteins

Sorafenib MCE Cat#HY-10201

Lenvatinib MCE Cat#HY-10981

Regorafenib MCE Cat#HY-10331

Apatinib Selleck Cat#S5248

Bevacizumab MCE Cat#HY-P9906

Pemigatinib MCE Cat#HY-109099

Ivosidenib MCE Cat#HY-18767

Gemcitabine MCE Cat#LY 188011

Cisplatin MCE Cat#HY-17394

Veratramine MCE Cat#HY-N0837

SR11302 MCE Cat#HY-15870

NY2267 MCE Cat#HY-134975

PKUF-01 This study N/A

SP600125 Selleck Cat# S1460

Tanzisertib (CC-930) Selleck Cat# S8490

JNK-IN-8 Selleck Cat# S4901

Advanced DMEM/F12 Corning Cat#10-092-CVRC

Penicillin/streptomycin Gibco Cat#15140122
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Glutamax Gibco Cat#35050061

HEPES Tocris Cat#3173

B27 supplement (without vitamin A) Life Cat#12587-010

N2 supplement Life Cat#17502048

N-acetyl-L-cysteine Sigma Cat#A9165-5g

Nicotinamide Sigma Cat#N0636

Recombinant human (Leu15)-gastrin I Meilunbio Cat#MB10217

Recombinant human EGF Peprotech Cat#AF-100-15

Recombinant human FGF10 Peprotech Cat#100-26

Recombinant human HGF Peprotech Cat#100-39

Forskolin Tocris Bioscience Cat#1099/10

A83-01 Abmole Cat#M5037

Y27632 Sigma-Aldrich Cat#Y0503-1MG

Recombinant human Noggin Peprotech Cat#120-10C

Rspo-1 Novoprotein Cat#CX83

Wnt3a SAB Cat#AP72293-2

Matrigel Corning Cat#356231

Critical commercial assays

DNeasy & RNeasy isolation kit Qiagen Cat#80204

CCK-8 Cell Viability Assay Beyotime Cat#C0040

Deposited data

Bulk RNA-seq data This paper GSA: HRA006499

Bulk WES data This paper GSA: HRA006499

TCGA LIHC data Cancer Genome Atlas

Research Network39
https://xena.ucsc.edu

Mendeley Dataset 1: Transcriptome

quantification of bulk RNA-seq data

This paper Mendeley Data: http://www.doi.org/

10.17632/rv2w3dv9rs.2

Mendeley Dataset 2: IF and IHC staining

in Figures 1D and Data S1.3

This paper Mendeley Data: http://www.doi.org/10.

17632/mp5ncd4z93.4

Experimental models: Cell lines

Liver cancer organoid lines This study Tables S1

Experimental models: Organisms/strains

Balb/c nude mice Peking University First Hospital https://www.pkufh.com/Html/

News/Articles/13312.html

Recombinant DNA

Flag c-JUN vector Mailgene biosciences F2807

Flag b-catenin vector Mailgene biosciences F5300

Flag JNK vector Mailgene biosciences F5156

sh c-JUN vector GenePharma C01001

sh b-catenin vector Mailgene biosciences F3927

sh JNK vector Mailgene biosciences G1290

Mutant b-catenin vector S33A Mailgene biosciences K8525

Mutant b-catenin vector S37A Mailgene biosciences K8527

Mutant b-catenin vector T41A Mailgene biosciences K8529

Mutant b-catenin vector S45A Mailgene biosciences K8531

Constitutive active JNK vector Mailgene biosciences E2547

Software and algorithms

Bwa-mem2 (v2.0) Li and Durbin49 https://github.com/bwa-mem2/bwa-mem2
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GATK (v4.1.2.0) McKenna et al.50 https://software.broadinstitute.org/gatk/download

ANNOVAR (version date 2019-10) Wang et al.51 http://annovar.openbioinformatics.org/en/latest

CNVkit (v0.9.7.b1) Talevich et al.52 https://github.com/etal/cnvkit

GISTIC (v2.0) Mermel et al.53 https://software.broadinstitute.org/cancer/cga/gistic

MuTect (v2.0) Cibulskis et al.54 wrapped in GATK

MEGA5 Tamura et al.55 https://www.megasoftware.net

STAR (v2.7.3a) Dobin et al.56 https://github.com/alexdobin/STAR

HTSeq (v0.12.4) Anders et al.57 https://htseq.readthedocs.io

RSEM (v1.3.3) Li and Dewey58 http://deweylab.github.io/RSEM

GSEA Subramanian et al.59 https://www.gsea-msigdb.org/gsea

ClusterProfiler (v3.14.3) Yu et al.60 https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

DESeq2 (v1.24.0) Love et al.61 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

R (v4.0.3) CRAN https://cran.r-project.org/

stats CRAN https://r-project.org/web/packages/stats

survival CRAN https://cran.r-project.org/web/packages/

survival/index.html

ROCR CRAN https://cran.r-project.org/web/packages/

ROCR/index.html

Bootstrap CRAN https://cran.r-project.org/web/packages/

bootstrap/index.html

glmnet CRAN https://cran.r-project.org/web/packages/

glmnet/index.html

Complexheatmap Bioconductor https://bioconductor.org/packages/release/

bioc/html/ComplexHeatmap.html

pheatmap CRAN https://cran.r-project.org/web/packages/pheatmap
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Ning Zhang

(zhangning@bjmu.edu.cn).

Materials availability
Distribution of organoids to third (academic or commercial) parties upon reasonable request requires approval by an internal review

board and completion of a material transfer agreement in order to ensure compliance with medical research involving human sub-

jects’ act. Use of organoids is subjected to patient consent; upon consent withdrawal, distributed organoid lines and any derived

material will have to be promptly disposed.

Data and code availability
DNA andRNA sequencing data have been deposited at GenomeSequence Archive for HumanHRA006499 and are publicly available

as of the date of this publication. Accession numbers are listed in the key resources table. All data from the TCGA database are avail-

able at https://xena.ucsc.edu/. All molecular data for CCLE cancer cell lines are available at https://depmap.org/portal/. All software

is freely or commercially available and is listed in the STARMethods description and key resources table. Any additional information

required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODELS AND STUDY PARTICIPANT DETAILS

Sample collection and patient information
Primary liver cancer (PLC) specimenswere obtained frompatients who underwent surgical excision of PLC at HenanCancer Hospital

(Henan province, China), the 302th Hospital of Chinese PLA (Beijing, China) and PekingUniversity Cancer Hospital (Beijing, China). All

patient samples in this study were collected with informed consent in accordance with the Declaration of Helsinki. The study was

approved by hospital ethics committees (2016CT054 and 2019-002-D). Table S1 summarizes clinical data of each patient.
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Tissue samples were stored in F12/DMEMmediumwith 1% v/v penicillin/streptomycin solution (Gibco) and transported to the lab-

oratory on ice. Each region of tissue sample was split into at least two sections, used for histological analysis and organoid culturing

respectively. For big samples, onemore section was cut for DNA and RNA isolation to be used forWES and RNA-seq profiling. A total

of 528 regions from 144 PLC patients were sampled and organoid cultures were successfully established for 399 regions. For 14

patients with relapse during the study period, patient response to therapeutic treatment was evaluated based onmRECIST criteria.62

Tissue dissociation and organoid culturing
Tissue was minced into small pieces (approximate 0.5–1 mm diameter) using fine dissection scissors, and then rinsed 3 times with

phosphate buffered saline (PBS; Thermo Fisher Scientific) at 4�C in 50-mL Falcon tubes. The minced pieces of tissue were then

dissociated using tumor dissociation kit (Milenyi Biotec) following the manufacturer’s instructions. Incubation (37�C) ranged from

30 to 90 min (depending on the amount of tissue) until the majority of cells were in suspension. Digestion was stopped by adding

cold DMEM supplemented with 10% FBS. Cells were filtered through a 70 mm Nylon cell strainer, followed by spinning (5 min at

500 g). Cells were incubated in 1X RBC lysis buffer (Thermo Fisher Scientific) under gentle rotation for 10 min at 4�C to lyse contam-

inating red blood cells. After RBC lysis buffer was aspirated, cells weremixedwith 30%growth factor–reducedMatrigel (Corning) and

seeded into ultralow-attachment 24- or 48- well plates according to the number of live cells. After Matrigel was solidified within

30 min, warm organoid isolation culture medium was added.

The isolation medium was based on a previous report23 with minor modifications including replacing Noggin, Rspo-1 and Wnt3a-

conditioned media with 25 ng/mL recombinant human Noggin (PeproTech), 500 ng/mL Rspo-1 (Novoprotein) and 100 ng/mL Wnt3a

(SAB). The expansion medium (for passage 2 and later passage) was comprised of Advanced DMEM/F12 supplemented with 1%

penicillin/streptomycin, 1% glutamax, 10-mM HEPES, 1:50 B27 supplement (without vitamin A), 1:100 N2 supplement, 1.25 mM

N-acetyl-L-cysteine (Sigma), 10-mM nicotinamide, 10-nM recombinant human (Leu15)-gastrin I, 50 ng/mL recombinant human

EGF, 100 ng/mL recombinant human FGF10, 25 ng/mL recombinant human HGF, 10 mM forskolin, 5-mM A83-01, 10 mM Y27632

(Sigma), 25 ng/mL recombinant human Noggin, 500 ng/mL Rspo-1 and 100 ng/mL Wnt3a. The culture medium was replenished

with fresh media every 3–4 days. Organoid cultures were passaged at a 1:2-4 dilution every 1–3 weeks by mechanical dissociation

or using 0.25% Trypsin-EDTA into small fragments. For preparing frozen stocks, organoid cultures were dissociated into singles cell

or small pieces and then frozen in 90%CS-FBS and 10%DMSO in�80�C. Cryopreserved stocks have been successfully recovered

for up to approximately 18 months after freezing.

Regarding the clinical/histological characteristics of liver cancer patients associated with organoid establishment rate, tumors

from clinical stage II/III/IV patients have significantly higher successful rate (p < 0.05) (Data S1.6), as indicated previously.23,28

Further, to investigate the experimental factors influencing establishment rate, we collected 30 samples from PLC patients and

randomly divided each sample for six aliquots, for organoid modeling using different experimental procedures (Data S1.7). As a

result, the proportion of living cells, sample acquisition time and methods of digestion showed a great impact in the successful

rate. However, our establishment rate (75.6%) could be compromised in a real clinical scenario with more complicated logistic issues

affecting the proportion of viable cells, as indicated by a recent multi-centre study.28

All developed tumor organoids (n = 399) have been the evaluated of cell morphology, by two independent pathologists based on

H&E staining. In addition, 159 oneswere further tested for tumor properties using at least one of threemethods (identification of driver

gene mutations, xenografting, aneuploidy analysis).

Organoid-derived tumor xenograft
Four-week-old male BALB/c mice were ordered from Center of Experimental Animals (Peking University First Hospital, Beijing,

China), and bred under pathogen-free conditions. All mouse experiments were approved by the Institutional Animal Care and Use

Committee of Peking University First Hospital.

For subcutaneous grafts, 5 million organoid-dissociated cell suspensions were prepared in 10% Matrigel/90% F12/DMEM. Two

weeks after inoculation, when the tumor volumes reached approximately 200mm3, mice were randomly divided into different groups

(n = 5 each). To test the effect of drug treatment in inhibiting tumor in situ, micewere treatedwith Lenvatinib (10mg kg�1, oral gavage),

Veratramine (10 mg kg�1, oral gavage), PKUF-01(10 mg kg�1, oral gavage), or Lenvatinib combined with Veratramine (10 mg kg�1

each, oral gavage) every day in the following 3 weeks. Tumor volume was measured every day and quantified every five days using

the formula: tumor volume =½ length3width.2 The significance of tumor volume was assessed by ANOVA and post hoc Tukey HSD

test. All mice were sacrificed after a total of five weeks.

METHOD DETAILS

Histology and immunostaining
Tissues and organoids were fixed for 24 h and 0.5 h respectively, in 10% neutral buffered formalin (Sigma-Aldrich) at room temper-

ature, and then embedded in paraffin. It was cut at 5 mm and stained according to the standard Hematoxylin and Eosin (H&E) and

immunohistochemistry (IHC) staining protocols. For IHC, primary antibodies against CK7, KRT19, HepPar1, AFP, c-Jun, JNK, b-cat-

enin (Abcam) were used at the dilution of 1:200. Immunostaining was scored considering both staining intensity and extent. Staining

intensity was classified as 0 (negative), 1 (weak), 2 (moderate) and 3 (strong). Staining extent dependent on the percentage of positive
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tumor cells were divided into 0 (<5%), 1 (5–25%), 2 (26–50%), 3 (51–75%), and 4 (>75%). The final score was determined by multi-

plying the intensity and the quantity scores, which yielded a range from 0 to 12.

WES sequencing and data pre-processing
For each tumor organoid/tissue sample, normal tissue or blood sample from the same patient was used as normal control. Genomic

DNA was isolated using DNeasy & RNeasy isolation kit (Qiagen) and exon regions were captured by Agilent SureSelectXT Human All

Exon V6 probes. DNA libraries were sequenced by Illumina NovaSeq 6000 platform and 150 bp paired-end reads were generated.

WES achieved amedian of3233 depth for tumor tissues,3236 for PDOs, and3249 for normal controls. Quality control of raw reads

was performed by FastQC (v0.11.9), Cutadapt (v2.5 with Illumina universal adapters) and Trimmomatic (v0.39 with PE, MINLEN_36)

tools. Clean reads were aligned to UCSC human reference genome (hg19) using bwa-mem2 (v2.0)49 with default parameters. Merg-

ing, coordinate sorting and indexing of binary aligned sequencing (BAM) files were performed using Samtools (v1.10). PCR and op-

tical duplicates were removed by Genome Analysis Toolkit (GATK) (v4.1.2.0). Sequencing coverage metrics were generated by Sam-

tools, based on the exonic regions specified by the target BED file (SureSelectAllExonV6r2). Median WES coverage was 3233 for

tumor tissue (n = 99) 3236 for PDO (n = 99), and 3249 for normal control (n = 36). More details were listed in Table S2, S3 and S4.

Somatic mutation calling
Somatic point mutations and small indels were called using the Mutect2 (version 4.1.2.0) pipeline for paired tumor-normal samples

with normal tissue or blood from the same patient used as control. Briefly, Mutect2 was applied to call somatic variants for each pair

of tumor–normal BAM file, and the generated VCF files were refined using the following filtering criteria: 1) at least 310 coverage of

wild type allele in normal sample with at most one read harboring mutant allele; (2) at least310 total coverage in tumor samples with

at least 3 reads supportingmutation allele; (3) readswithmean base quality <20 at each variant position were excluded. The identified

candidate variants were further filtered by population frequency (<1% kept) in the ExAC database, gnomAD_exome (v2.1.1) and

1000Genome (August 2015). Somatic variants were annotated using ANNOVAR. Liver cancer-related genes were curated from pub-

lished liver cancer genomic studies, including genes from our previous study15 and genes from a previous study of PLC organoids.23

Regarding the comparison of concordant non-silent mutations in cancer-related genes between tissue-organoid pairs and between

multi-region samples, we manually checked all inconsistent variants to rescue the potentially missed ones due to tumor purity, ac-

cording to a published strategy.23 All identified non-silent somatic mutations were summarized in Table S2 (organoids) and Table S3

(tumor tissues). Tumormutation burdenwas computed as the sumof all non-silent mutations per tumor divided by the total number of

captured bases by Agilent v6 (38.3 Mb).

Copy number calling
Copy number alterations (CNAs) was estimated using CNVkit with the default parameters. Significantly recurrent CNAs were iden-

tified using GISTIC2.053 with the default threshold (q < 0.25). And the significant CNAs were used for comparing copy number profile

of organoids and tissues. Liver cancer genes within frequent CNA segments were adopted from our previous study.15

Phylogenetic tree
For multi-regional organoids sampled from a same tumor, we inferred a phylogenetic tree based on their genomic profiles as

described in our previous study.15 Briefly, genomic sequences (+/� 20 bp from the mutation position) of each sample were extracted

to construct the phylogenetic trees by using MEGA5 with maximum-parsimony algorithm. Potential driver genomic events were

labeled on each tree’s root, stem, clade and leaf, based on the clonal relationship. We adopted our previously reported metrics

Mut-ITH and CNA-ITH,13 to quantify genomic ITH levels of each patient, which were listed in Table S5.

RNA-seq and quantification
Total RNA was isolated using DNeasy & RNeasy isolation kit (Qiagen) and purified using poly-T oligo-attached magnetic beads. RNA

libraries were also sequenced by Illumina NovaSeq 6000 platform and 150 bp paired-end reads were generated. Quality control of

raw reads was performed by FastQC (v0.11.9), Cutadapt (v2.5 with Illumina universal adapters) and Trimmomatic (v0.39 with PE,

MINLEN_36) tools. STAR software (v2.7.3a) was used to align reads to the reference human genome hg19 with default parameters.

Gene-level read counts were generated by applying HTseq-count with the GENCODE annotations, and transcript per million (TPM)

values were calculated using RSEM.58 Unless specified, log2 (TPM+1) was referred as mRNA expression level in this study. The cor-

relation heatmap between tissue-organoid pairs was plotted as previously described.21 Average expression of target genes of Sor-

afenib and Lenvatinib (Sorafenib targets: VEGFR2, VEGFR3, BRAF, RAF, PDGFRB, KIT, FIT3; Lenvatinib targets: VEGFR1, VEGFR2,

VEGFR3, FGFR1, FGFR2, FGFR3, FGFR4, PDGFRA, PDGFRB, KIT, RET) were used for Figures 2F and S2D, with log10 transformed

expression of all 3,804 potential housekeeping genes that are expressed uniformly across different tissues63 used as the reference

control. Significance of the expression variance between multi-samples was determined by ANOVA.

Drug screening
In total, seven anti-tumor agents used in clinical practices, three c-Jun inhibitors and a compound (PKUF-01) were used for drug

screening. All drugs were dissolved in DMSO and stored at �80�C. Organoids were digested into small spheres within 70 mm. For

organoids could not be digested well by mechanical dissociation or 0.25% Trypsin-EDTA, we passed through a 70 mm cell strainer
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to eliminate large organoids. Organoids were seeded into ultralow-attachment 96-well plates or 384-well plates at the density of

approximately 100 organoids per 100ul in 5% Matrigel/culture medium. As suggested by a previous study,64 Y-27632 and A8301

were removed from the complete culture medium, due to the consideration that these inhibitors might have some potential effects

on specific signaling pathways affecting the results of drug screening. After plating, a 7-point 5–10 -fold dilution series of each drug

was dispensed. Drug concentrations ranged from 50uM, 10uM, 1uM, 0.1uM, 0.01uM, 0.001uM and 0uM (denoted as control), and

maximal DMSO concentration used was 1%. Cell viability was analyzed using CCK8 assay according to the manufacturer’s instruc-

tions following 6 days of drug incubation, and results were normalized to corresponding control. Data analyses were performed using

GraphPad Prism 9 software, the values of IC50 and AUCwere calculated by applying nonlinear regression (curve fit) and the equation

log(inhibitor) versus normalized response.65 Each dilution of drugs was performed at least in triplicate. The AUC or IC50 values of

organoids treated with each drug were listed in Table S6.

Themaximum IC50 (or AUC) value among all regions from a patient were defined as the patient-level IC50 (or AUC) value, based on

the assumption that a patient’s response to a drug treatment was determined by the most resistant region. All patients were ranked

by patient-level AUC and dichotomized into sensitive and resistant groups for each drug respectively, using the percentile cutoff ac-

cording to the reported clinical overall response rate (ORR), which were 24.1% for Lenvatinib,6 9.2% for Sorafenib,6 11% for Regor-

afenib,7 10.7% for Apatinib,66 and 3% for Bevacizumab.67 Although some ORRs were from clinical trials of HCC patients due to a

current lack of studies with both HCC and ICC included, they were reasonable approximations of all PLC patients as HCC accounts

for 90% PLC patients5 and 86.6% organoids in the biobank. Additionally, due to the lack of WES/RNA-seq profiles for all organoids,

wemade an assumption of 1% for the proportion of sensitive organoids to treatment of Pemigatinib and Ivosidenib in the biobank, as

Pemigatinib32 and Ivosidenib33 targeting ICC patients harboring low-frequency mutations (10–16% for FGFR2 rearrangements and

approximately 13% for IDH1 mutations)32,33 and ICC patients accounted for 15.5% of total organoids we generated.

Differential gene expression and gene set enrichment analysis
Differential expressed genes (DEGs) between the drug sensitive and resistant groups were identified by DESeq2 with absolute fold

change >2 and adjusted p value <0.05. The ranks of DEGs were used for GSEA analysis with a published stem cell gene set23 and

GO_BP gene sets (MSigDB V7.5.1). Significant enrichment was considered as q < 0.25. KEGG andGOpathway enrichment analyses

of genes of interest were performed usingClusterProfiler. A previously-reported HCC transcriptome subtype29 was tested in our HCC

transcriptome profiles by applying nearest template prediction (NTP) algorithm (GenePattern module), and the consistency of pre-

dicted subtypes between tissue-organoid pairs was assessed by Fisher’s exact test.

Machine learning model of drug response
To model the drug response with transcriptome data, we applied a bootstrap strategy using LASSO (least absolute shrinkage and

selection operator) regression models to develop expression signatures for predicting treatment response of five drugs (Lenvatinib,

Sorafenib, Regorafenib, Apatinib, and PKUF-01) following a similar strategy employed in ReProMSig.68 In brief, candidate genes

were first selected based on expression associations with individual drug response in the training set (n = 106), with a stepwise in-

crease (0.01 per increase) of correlation coefficients and a limit on the number of identified candidate genes (100-1,000). Multiple sets

of candidate genes were then selected and used for building each specific predictionmodel respectively. A LASSO regressionmodel

was applied to model drug sensitivity profile (-log2 of IC50 value) with expression profiles of a set of selected candidate genes, which

was implemented using the glmnet package (v4.1-3) with the optimum penalty parameter ‘lambda’ chosen by 10-fold cross-valida-

tion. The regression modeling process was bootstrapped (n = 100), and candidate genes regarded as important genes in more than

50% occurrences, were taken as signature genes for final modeling. The optimal model with a specific correlation coefficient cutoff

was then obtained by fitting the chosen signature genes. AUROCs of all models associated with an individual drug were compared to

find the optimal threshold of correlation coefficient, which was 0.28 for Lenvatinib, 0.63 for Sorafenib, 0.29 for Regorafenib, 0.34 for

Apatinib, and 0.27 for PKUF01, respectively. ROC curve and AUROC were analyzed by the ROCR package (v1.0-11).

The validation set consists of another 106 organoids, which were established prospectively using samples from Henan Provincial

Tumor Hospital (Henan, China). The finalmodel for each drugwas evaluated on the validation set respectively, by ROCcurves. The 11

patients with transcriptome and drug response were involved in the validation of signature prediction and clinical response.

Plasmids and transfection
Plasmids used in the study, including 33Flag, Flag-c-Jun, Flag-JNK, Flag-b-catenin, sh NC, sh c-Jun, sh JNK, sh b-catenin, mutant

b-catenin and constitutive active JNK, were ordered from Mailgene biosciences co., ltd. (Beijing, China). By using Lipofectamine

3000 (Invitrogen), we transfected digestive organoids cells with indicated plasmid following the previously reported protocol.69

When the neomycin phosphotransferase gene (neo) in cells were expressed, organoids showed potent resistance to G418. Trans-

fected organoids were selected by organoid culture medium adding additional 400 mg/ml G418 (GIBCO) for 14 days.

Synthesis of PKUF-01
The PKUF-01 compound used in this study was synthesized by our laboratory, consisting of five steps as illustrate below.

Step 1: Adding Veratramine (200 mg, 0.5 mmol) and fluorene methoxycarbonyl chloride (145 mg, 0.6 mmol) in order in an

eggplant-shaped reaction bottle, and 20 mL dichloromethane was introduced to dissolve this mixture. Followingly, triethylamine
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(60mg, 0.6mmol) was added and stirred at room temperature for 1 h until the reaction was complete. After vacuum concentration,

the crude product was separated and purified by column chromatography to obtain compound A, a white solid, with a yield

of 88%.
Step 2: Adding compound A (133 mg, 0.2 mmol) and p-nitrophenyl chloroformate (51 mg, 0.25 mmol) in order in an eggplant-

shaped reaction bottle, and 20 mL of dichloromethane was used to dissolve this mixture. Followingly, pyridine (24 mg,

0.3 mmol) was added and stirred at room temperature for 1 h until the reaction was complete. After vacuum concentration,

the crude product was separated and purified by column chromatography to obtain compound B, a white solid, with a yield

of 90%.
Step 3: Adding compound B (150 mg, 0.2 mmol) and 1,3-propanediamine (15 mg, 0.2 mmol) in order in an eggplant-shaped re-

action bottle, and 20 mL dichloromethane was used to dissolve this mixture. Followingly, N. N-diisopropylethylamine (DIPEA,

49mg, 0.4 mmol) was added and stirred at room temperature for 1 h until the reaction was complete, after vacuum concentration,

the crude product was separated and purified by column chromatography to obtain compound C, a white solid, with a yield

of 87%.
Step 4: Adding 4 - (3-chloro-4 - (3-cyclopropylurea) phenoxy) - 7-methoxyquinoline-6-carboxylic acid (64 mg, 0.15 mmol) and

2 - (7-azabenzotriazole) - N, N, N 0, N’ - tetramethylurea hexafluorophosphate (HATU, 76 mg, 0.2 mmol) successively in an

eggplant-shaped reaction bottle, and 20 mL dichloromethane was used to dissolve them. Followingly, DIPEA (49 mg,
Cancer Cell 42, 535–551.e1–e8, April 8, 2024
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0.4 mmol) was added and stirred at room temperature for 15 min, and then compound C (112 mg, 0.15 mmol) was added and

stirred at room temperature for another hour until the reaction was complete. After vacuum concentration, the crude product

was separated and purified by column chromatography to obtain compound D, a white solid, with a yield of 83%.
Step 5: Adding compound D (116mg, 0.12 mmol) into an eggplant-shaped reaction bottle, and 20mL 20%methylpiperidine DMF

solutionwas used to dissolve thismixture, followed by stiring at room temperature for 15min until the reactionwas complete. After

vacuum concentration, the crude product was separated and purified by column chromatography to obtain compound PKUF-01,

a white solid, with a yield of 95%.
QUANTIFICATION AND STATISTICAL ANALYSES

Where applicable, statistical methods are outlined in the respective figure legends. Statistical analysis was performed utilizing

GraphPad and R software. p values were calculated using a two-tailed Wilcoxon test. Spearman correlation was used for gene-

drug analysis. DNA and RNA sequencing analysis details can be found in the relevant STAR methods sections.
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